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I. INTRODUCTION

A. Purpose

‘The pwrpose of this investigation is to derive some of the matrix
properties of electric networks, especially those networks intended for the
transmission of power, and to apply the methods of matrix calculus to the
solution of such networks. Although the methods described are applicable
to any linear network, it is anticipated that they will be most useful in
the study of power systems.

Up to the present time the power system probiem has been attacked
using primarily the known tools of circuit analysis with the expression of
‘the problem in mathematical terms somewhat suppressed. ’L’nis has appeared
to be the most convenient and direct means available to solve such
problems. However, as will be shown later, it is helpful to view the
problem as simply a system of equations for which a solution is desired.
Here the methods of matrix calculus are particularly powerful because of
| the simplicity with which long and complicated mathematical statements can
be compressed using these techniques.

It is also enlightening to set down the boundary conditions of the
physical problem as mathematical statements. From this point it is possi-
ble to clearly determine the steps required to solve many problems in=-
volving electric networks which are rot usually attempted because of their

complexity.
B. Géneral Description of the Power System Problem

Because the problem under consideration has the power system as its



origin, a few remarks concerning the modern power system are required.
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The pauns avaliable for tne flow of elec
sumer are becoming increasingly numerous and complex in the modern power
system. This is due primarily to the ecomomy inherent in very large
generating facilities located ir low fuel cost areas, often at large
distances from load centers. This requires large networks of transmission
lines to carry power to consumer areas and, to guard against loss of
generating facilities, requires strong transmissidn ties between gener-
ating stations. This pattern has intensified ovér the years with the
growth of both loads and generating stations. The transmission networks
have become quite larée in many cases and the solution of these networks
by mathematical means has become increasingly difficult. Before digital
computers were available these problems were usually solved on large scale
analog computers or network analyzers which were designed specifically for
this purpose. Now, with digital computers in wide use it is only natural
that solutions be attempted which will utilize the ‘speed and accuracy of

these devices.



II. REVIEW QF LITERATURE

Beginning in 1546, articles began appearing in the literature oc-
casionally regarding the use of the digital computer or the "business ma-
chine®™ of that day in the solution of electric networks (1,2,3). Up to
~ that time, problems involving power systems were usually solved on network
analyzers and little thought was concentrated on strictly mathematical so-
lutions of these systems. However, the early articles by Dunstan (2,3,L)
arcused much interest and the years that followed produced several new
methods for handling these problems. This evolution of computer usage has
been accompanied by a closer examination of the mathematics of the problem
and this in turn has brought forth several significant papers.

In order to clarify the historical development of this area a few
comments are in order regarding general methods used by other investi-
gators. As the methods used to date fall into definite patterms as to
type of solution, they will be discussed in this grouping rather than by

authors.
A. Early Attempts at Computer Usage

In 1946, a paper appeared (1) which ocutlined a solution of a power
system probiem for an accounting or business machine. In this paper the
authors did not attempt a problem with non-lineér boundary conditions.
Instead, they assumed that both load and generator currents ﬁere known in
magnitude and phase angle. This simplification, although quite uwnreal~
istic, reduced the problem to a set of linear equations which could be

easilj solved by conventional techniques using loop currents. Perhaps the



main contribution of this early effort was to arouse the interest of engi-

B. Loop and Track Methods

Solutions to the power system problem which closely resemble the well
known loop current technique were first proposed by Dunstan (2,3,L4). Al-
though never widely accepted, these papers contain some clever extensi;;s
of loop currents to loop "load loss flows™ or power flows. One method (2)
converges by a technique referred to as successive approaci.mations in which
loop flow estimates are repeatedly improved until boundary conditions are
satisfied. Another suggested method (3) requires a matrix inversion in
each iteration to solve a loop current analogy, but appears to have a more
serious limitation in the use of unrealistic boundary conditions. Despite
these difficulties, these methods converge in a very few iteratioms.

A later paper by Henderson (5) described another loop or track method
based upon the earlier work of Dunstan which reduced the mmber of matrix
inversions to one instead of the earlier one per iteration. In this
method power and reactive power are used instead of current to satisfy
Kirchhoff's voltage law. Briefly, each iteration is carried out as
follows: TFirst a flow of real and reactive power is estimated in each
line. Then losses are computed and subtracted from the losses of the
previous iteration to determine an incremental loss which in turn is ap-
plied to each mesh to determine an incremental flow. This incremental flow
is superimposed upon the original flow to determine a new flow. Now the
voltage and phase shift across each line is determined and loop errors are
found which again requires a balancing flow to satisfy Kirchhoff's law.



This balancing flow is superimposed upon the one previously computed and
Wie process is repsaved. Thls ingenicus scheme cooverges to "metwerk ana-
lyzer accuracy" in not more than three iterations according to the author.
However, in all fairmess to other authors it should be made clear that
most methods devised are expected to converge to an acéurécy several

orders of magnitude greater than that obtainable on a network analyzer.
C. The Ward and Hale Method (Nodal Method)

In 1956 a paper was published by Ward and Hale (6) which has since
become almost a standard for comparison because of its wide acceptance.
This paper, unlike those preceding it, was based upon nodal techmiques and
was the first paper to describe a power system with its nonlinear boundary
conditions adequately. Since it also avoided the matrix inversion re-
quired of the loop method it was indeed a major improvement. The method
has one serious drawback however since it converges very slowly and
therefore requires a large number of iterations unless the initial voltage
estimates are very near the solution.

Because of the importance of this paper and its wide use as a basis
for comparison of new methods a few detailed comments are in order. This
method is especially attractive for computer sclution because it involves
no matrix inversion and requires no track diagram. Iteration can be con-
timued until all boundary conditions are satisfied to within some arbi-
trary precision index and need not be cyclic as required by some other
methods. It's primary disadvantage is the relatively large mumber of
iterations required.

Briefly the method is carried out as follows. First all bus voltages



are estimated and expressed in rectangular form using convenient values

suchi as 1 + jO for all busses except oie. One Lus, usSuarly Wwat of Wus

swing generator, can be completely specified and held at its known value.
Second, using the equation i = Zn :Ilmém’ the total current entering the
first bus is calculated and fro:%his the total power entering the bus is
found from P, = Re(F:k‘..tZ). This power is compared with the specified load
or gemsrator flow for that bus. Third, assuming all other voltages remain
constant, E.k is corrected in a direction which will minimize the error in
load P, and Q. (or P . and E_ for a generator). Fourth, the current e-

quation is again applied to find i‘k +1 using the corrected value of Ek in

this calculation. Pk

and a new ﬁk +1 is found. This process is repeated until the voltage cor-

+1 is computed and compared with a specified walue

rections are smaller than a specified precision index.

The method is convenient in its use of normally known System quanti-
ties such as per unit watts and vars at load busses and per unit watts and
voltage magnitudes at generator busses. These are the same boundarj con=-
ditions normally applied tc network analyzer solutions and are usually
known by the power system engineer. The method has been found to diverge
on some systems with negative reactances such as found many times in
three-winding transformer equivalents.

D. Methods of Speeding Convergence

Following the Ward and Hale paper in 1956, several investigators (8,
9,1),16) published methods for speeding convergence of the original nodal
technique. One paper (8) presented a wide variety of schemes for ac-
complishing speed-up but these were mostly trial and error methods without



known mathematical analysis and many of them failed. In some cases the
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particular system studied, caused reductions in the mmber of iterations
of about six to one. The methods used were mostly variations of the idea
that speedup could be accomplished by multiplying the voltage corrections
by some factor, say 1.6 or 1.7, and the multiplier was steadily increased
until the method failed. Other methods tried by these authors included
simultaneous correction of all bus voltages, linear comrergeﬁce and relax-
ation methods. The success or failure of all these methods seemed to be
somewhat dependent upon the physical system._ ]

Jordan (9) was able to reduce the mumber of iterations appreciably by
applying a modified Seidel relaxation technique. Using the basic Ward and
Hale solution, he computed a residual current for each bus and, by di-
viding the negative of this residual by the diagonal term of the Y matrix
was able to obtain a correction component for the bus voltage. The method
used was not strictly a relaxation. since he took the busses in a fixed
order rather than selecting the largest residual for each iteration. One
unique feature of the method was the iteration of the swing generator
voltage which, after convergence, was then corrected to the final desired
value by additional iterations. The method, as reported, had been tried
only for power and reactive power boundary conditions which would 1limit
jts application. One should note also that, since the Y matrix is not
positive definlite the method will fail when a diagonal term is negative as
this would force the solution toward a maximm residual (18).

Van Ness, in a paper (1) published in 1959 suggested several im-

provements on the Ward and Hale technique. Among these was a solution of



the problem in polar form for the unknown voltages. This eliminates
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tude is usually given as one of the boundary conditions. In the same
paper the suthor outlines other speed-up techniques, some of which are
worthy of mention. One method tried was that qf holding all voltage cor-
rections until they had been computed for a1l busses and then applying
them simultaneously. This resulted in no iﬁ:provement. A second method
which was more successful was to make the corrections of the second iter-
ation equal to some given fraction, say 0.5, of that of the first iter-
ation, and so forth. This resulted in a definite speed-up in the con-

" vergence and is analogous to the arbitrary speed-vy method presented
earlier by Brown and Timmey (8).

In 1960, a second paper by Van Ness (16) analyzed in terms of eigen-
values the acceleration techniques discussed in his earlier paper. In
this analysis he examined a matrix of coefficierrhs derived by equating the
unknown voltage and angle corrections, in polar form, to the errors com-
puted in power and reactive power. He then proceeded to show that the .
largest eigemialue of this matrix determined the rate of convergence;

E. Acceptance of Computer Solutions

It is worth mentioning, in comnection with the problem of digital
computer solution of power flow problems, a few of the many publications
relating to results of studies performed on various machines using known
techniques of the time. A few typical of these reports are listed (10,11,
12,13) for their value in illustrating the comparison of previously
pubiished methods and their handling on computers of widely different



size. Many more reports similar to these have appeared in the journals
and publicatvions ol thne engipeering Iield and serve o illusvrave Uhe wias

interest in the problem at hand.
F. Recent Developments

In a 1959 paper (15), Hale and Goodrich presented a different ap-
proach to the problem which they refer to as the transfer ratio method.

In effect, this method iterates on voltage at busses where the voltagé
magnitude is specified and iterates on currents at tile remaining busses.
This results in a dramatic reduction in the number of iterations (from 5k
to 10 in one case). The convergence is oscillatory for this method as
compared to the Ward and Hale method which is usually monotonic after a
few iterations. Furthermore, the transfer ratio method approaches the so-
lution very fast in the first few iterations after which the oscillations
become generally quite small. Little analysis has been done as yet on the
~ exact nature of this method but it may prove to be a very important tech-
nique, especially when combined with acceleration techniques.

In February 1961 a paper (17) was presented by Van Ness at the Winter
General Meeting of the American Institute of Electrical Engineers in New
York City. In this paper a new and quite different apprc;a_ch to the
problem was presented which the author chose to call the "Elimination
Method". In this method fhe Ward and Hale technique is followed to derive
formmlas for the voltage corrections which should be applied to each bus,
neglecting the higher order terms. Then, using the elimination method,
the set of equations so derived are solved simultaneously for the various
correction factors which, in the case presented, were the voltage magni-
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tude and phase angle corrections. In addition to computing simmltaneous
correction faciors, acceleration faciors were appiled Lo eac
The result was a marked decrease in the number of iterations although the
time per iteration was increased. In one example given, a reduction of
from 4O to 3 iterations was experienced whereas the time per iteration was
about doubled.

In the same paper the author described a technique for applying the
elimination and cyclic iteratior in combination to the same solution. The
result in this case was an improvement over the Ward and Hale method but
the method could not be accelerated by any known means. |

It would appear that these last two papers have contributed much to
our knowledge of iterative techniques. Wwhile both need, and undoubtedly
will receive, much study in the future, it appears that a rapidly con-
verging method will ultimately result and the digital computer will be a
tool which power system engineers will find both economical and accurate

for many future load flow problems.



ITI. A SCLUTION TO THE POWER SYSTEM FROELEM
A. General Solution in Terms of Terminal Admittances

Electric power systems are nearly always balanced three-phase systems
when operating under normal, steady-state conditions. For this special
case the three-phase system can be represented on a single phase or '"per
phase®” basis with no loss in geqerality. The per phase basis is to be as-
sumed throughout the calculations that follow.

Consider the n-port, passive network, S, the elements of which are
all assumed to be within the box shown in Fig. 1. Only the terminals of
particular interest are shown and these are designated 1, 2, 3, =--n.
Positive convention for current direction is into the network as shown in
the diagram. Voltages are considered as voltage rises from the reference
node to the terminal in question as shown in the diagram by ﬁB with ap-
prepriate polarity. In order that phasors, such as current and voltage
can be clearly distinguished from matrices, the phasor wvalues each have a
dot directly above the letter as in Fig. 1. All terminals should be
thought of as two-terminal pairs, or ports, with the same reference termi-
nal common to all.

Define the following.

Ey = e + 35 1

I =&y + b 2
Using P and Q to represent power and reactive power respectively we may
write

B *+ 39 = EI = (e + b)) + j(f 8 - eby) 3



Fig. 1. The n-port system showing positive conventions for ik and ék



12b

L | | &
__ii'_—_ S _—Eb—
| | &
+

U
o 4“

REFERENCE
NODS




13

-

where (* ) denotes the conjugate of the current is used. Then obviously
R " O N

md G = Ldy - ol

Since the power and reactive power are dependent upon the network S, we

require additional information to solve equatiomns L completely. The ad-

ditional constraints are supplied by Kirchhoff's law which may be stated

as follows.

L = YpqBy + I8, + 7 7 T v L E)

Ip = Ip8y) + T8y + 7 7 "+ I8,

L= Iy + Iy +° 0t + LB

In' nlE1+Yn2E2+ e *YnnEn
Here the symbol Y is a terminal admittance which may easily be related to
the physical admittances within the network (19). It will now be helpful
to expand i’ into its real and quadrature components.

Ty =8 * 3By
Now, expanding equations 5 in terms of the components we obtain the
following. ' ‘

~8) = Gy92 = Byfy + Gygep = Bipfp v 7 T T 4 Gypep - Byt
8y = Gpn& = Bynfy + Gyep = Bppfp * * G0 =~ Bonfn

8, = Gpney = Bty + Gypep = Bppfp + ° 7 ° + Gppey = Bty



1L

by = Bjyeq + Gygfy + Byjey + Gpfp + 0 = + Byep + Gpdy

b + G e + G, I

2 = By * Gyufy + Byjey + Goofy + ° ° 4+ Byey + Uty

- - Y TR w4 . e S

b, =Bje; + G 5 +B e, +Gf,+° °°+B e, vG 0

This allows us to write the expressions for power and reactive power at

the kth port in terms of only the voltages at that port.
P = oy * Dby
= e (Gney - Bafy * 6oy = Bpfp + 7 ° ¢+ Gey - Bofy)
* 0 By + Gy * Bgey * Gofp + 7T T+ By * Gfy) 8

Q = fiay - eb
‘fk(Guel‘Bufl*sz"a‘Bszz* e Gy - B f)
= e (Bgey + Gqfy + B8, + Gpfy + = ¢ = + Boe + G f) 9

We now have expanded ther expressions for P and Q to the point where, if

the voltages‘are all known, the power and reactive power can be found di-
rectly. This is a convenient way to express power system quantities since
the voltage is usually known to within a few per cent and, even when iter-
ative methods are required, the initial Vaiue chosen for the R and fk can
be relatively close. Rewriting equations 8 and 9 we obtain the following

quadratic forms.
et adat T afaf T T T et “eBgfe t T

+ oGy - Bty t fiBney Y 5800 v

*OBatk t Dt Y Al * A 10
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U = 8y = HiBnfy * 0 0t LG - BB St
* £,Ge, = 5B 1, = 6 Bqey - €l -0 0 e

" &Pt ~ Al T 7 7 7 %Ba®n T %Paln n

1. Calculation of the 4 and B matrices

We now have the expressions for all electrical quantities usually de-
sired at any port of an n-port system, namely current, power and reactive
power. Furthermore, all of these quantities are bexpressed in terms of
known system quantities and voltages. Thus, given the voltages, currents
can be found from equations 5 or 6 and 7, power from 10 and reactive power
from 11. -‘Ihe quantities of greatest interest to the power system engineer
are the power and reactive power. It would therefore be to our advantage
to be able to express power and reactive power in a simpler form than that
given by equations 10 and 11. This can be accomplished quite easily in
matrix notation and in a form so simple that it can easily be remembered;

et the matrix Ak be defined as follows.

i % Ba o o 1

© 0 == 0 == = 0 -
Ba  Gg
0} - 0 —— 0 0

o 0 = =
Geo B
© 0 - 0 - = 0 =— 0 0
poo O - o Tl Jeied o o o |,
G =B By k-1 0 Gk,k-&l Gpn By
5. "3 —2 - Gy 2 > "3
Ba Ga | % Bexa _ Bo G
2 "2 2 Grge 2 7 2
a
6o o — o kel gl o o o
) 2
fa) 8] -—— 0 :E-L _Glg 0 —— 0 0

2 2
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Similarly, let Bk be defined as follows.

i “2a ‘i .
6 0 == 0 a " °© - 0
-G - .
K1 B
0 0 — 0 < - 0 --- 0
- G
0 0  —m 0 P2 k2 0 - 0

o o0
B - 2 2 13
Ba Sa S o Bexn i
5 ) 2 B 2 )
Ga Ba . Bexa 5, S D
2 3 2 2 3
0 0 -- 0 _'_B%gg -Gl‘-gﬁl 0  am= 0

Also define, using the prime symbol to indicate transpose, the following
vector of voltage components.

Xt = (655158558, ° ° *5e,f) 1L
We can now express power and reactive power quite simply as follows.

B = Ead | %

q = BBE 16
For clarification, the complete A and B matrices for a three-port network
are shown in Appendix A. It will be noted that both matrices A and B are

symeetric and, with a little practice, could easily be written from memo-

ry. Also, using the matrix notation for the quadratic form, the expansion



17

to obtain power or reactive power on a digital computer are quite clear
wilhiout amy reiferencs ¢ details regording the individnal elements. Tt is
only necessary to store the X vector and the A or B matrix in an orderly
manner in the computer memory and expand directly with a minimum of com-
puter orders. This form is also unique in that both power and reactive
power may be determined directly without any reference whatsocever to the
currents at each port. |

2. Properties of the A and B matrices

It was mentioned previously that the A and B matrices are symmetric.
It should also be noted that many of the elememts are zero and that the
zeros are grouped in blocks which are symmetric about the major diagonal.
Thus, because of the zeros, any matrix multiplication involving these
matrices will be greatly simplified if advantage is taken of their
preseﬁce. Also, since the matrices are symmetric the eigenvalues of the
matrices are all real and the linear spaces of eigenvectors may be spanned
by real vectors (20).

Since the eigenvalues of a matrix reveal so clearly the properties of
the matrix it would be helpful to know the eigenvalues of matrices A and
B. Taking matrix A first, and defining A to be an eigenvalue of A, we can
write

Au = W 17
where U is a nonzero vector. Equation 17 can also be written in the form

(A -1 =0 18
where I is the identity matrix. Since matrix A is a 2n x 2n matrix, n
being the number of ports, then I is also 2n x 2n and u is al x 2n
vector. Equation 18 has non-trivial solutions only if
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A of a given size. Appendix B gives the detailed calculations for cases

with n equal to two and three.

It appears obvious from an inspection of

these results that A and B matrices of any size network will have two two-

fold eigenvalues and the remaining (2n - L) eigenvalues will all be zero.

Also, because of the nature of these eigemvalues, the eigenvalues of the

matrices A, and Bl: for the kth port of an n-port network may be written by

induetion as follows. For Ak

A

ma " Mk 2 =z Z

(% (3B

B )’ 7

(B (%” .
WS [ R R )

(B ]

1/2

RN a

)‘AkS')‘Ak6-...')’Ak,2n-o 22
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T A T
"Bkl ~ "Bk2 2 \ 2/ \ 2 |/ 2 |
(3% ()
+(?—k22££)2+“”(%2)21/2 i}
o - - 2 (2 (3
2) . (G) (S
o] .
‘s " Mmes "t " dpg,on = O %

Since the A and B matrices are symmetric the eigenvalues should be
real. This is certainly true since all terms within the radical are
squared terms.

It is also possible to draw some conclusions concerning the rank of
the A and B matrices. Since any symmetric matrix may be transformed by an
orthogonal matrix U such that U'AU is a diagonal matrix with each X\ of A
occupying one of the diagonal positions, then 211 A and B matrices have
rank four. Since A and B are always of rank four the quadratic form X‘'AX
is also said to have rank four. Ve should also note that the eigenvalues
of A and B alwgys come in pairs. There are, therefore, two linearly inde-

pendent eigenvectors associated with each eigenvalue.
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One additional property of these matrices that requires investigation

L - LA s m, 2
e

AL & O - PR, - ———
wi&e Of aelisdtensss. T “"‘313113’ .'3...,.""'"""‘"{‘, in spme 3tewstive
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techniques where the form must be positive definite or positive semi-defi-
nite to guarantee convergence (18). An examination of the eigenvalues of
A and B show that these matrices are certainly not definite. This agrees
with physical reasoning since we know that Pk or Qk may take on either
positive, negative or zero values.

3. Properties of the elements of the A and B matrices

Now that the A and B matrices have been determined, some comments are
in order regarding the individuval elements of these matrices. These ele-
ments consist of the real or quadrature components of the terminal ad-
mittances. Kimbark (19) indicates the method of computing these ad-
mittances as, in fact, do many other texts in electrical engineering. In
general, if we let § represent any physical admittance within the network,

then

T "Ta * T2 *Tig * T T Vi * ko
where O refers to the reference node and

ikm = -&lm where k # m.
These admittances are usually referred to as the self- and mutual-ad-
mittances respectively, or simply as the terminal admittances. Once the
network impedances or admittances are known it is a simple matter to com~
pute the terminal admittances.

One common problem which often arises in power system analysis is the
handling of voltage transformations. Ward and Hale (6) have presented a
convenient method for attacking this problem. The method will not be re-



peated here except to state that the turms ratio of the transformer ef-
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lated in terms of N, the turns ratio, and N can then be inserted as part

of the transformer self admittance. These admittances can be calcu~

of the data and altered as desired.

Another problem which is sometimes troublesome, especially in iter-
ative solutions, is the preseﬁce of a node within the network which is not
identified as a terminal. Two methods of handling such nodes are availa-
ble. First, the node can be considered as a load terminal with zero power
and reactive power as boundary conditions. The only trouble with this
method is that the boundary conditions are satisfied in two different
ways. One solution gives the correct voltage at all nodes such that zero
power and reactive power results. The other solution is that of zero
voltage, which is an umwanted solution. Where the presence of such an in-
ternal node is troublesome a second method of attack can be recommended
without reservation. This is the elimination of the unwanted node by

means of a star-mesh transformation.
B. Boundary Conditions in Power System Problems

Before proceeding with the solution of the network, the boundary con-
ditions must be assigned. Since there is no unique set of boundary con-
ditions for problems of this type it is necessary that all the most likely
boundary conditions be examined so that some general conclusions may be
drawn regarding the consistency of the equations to be solved.

1. Rules for determiming a consistent set of boundary conditions

Consider the n-port network of Fig. 1 with current, voltage, power
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and reactive power defined as before in equations 1, 2 and l respectively.

- Aoy
WA D N

Seek a scluticn for this meswwork in
tangular form of the voltages or currents. We now make the following
observations:
(1) For an n-port network there are ln variables, namely a,,
bk,ekandfkfork-l, 2, 3, * * * n;
(2) In order to express the problem mathematically so that one
or more solutions are possible, exactly half of the In
variables, or 2n mmust be specified and 2n equations must
be written, or;
(3) If, for some reason we are unable to specify 2n variables
explicitly, 2n independent constraints must be specified
which arev functions of the ln variables, and 2n equations
must be written.
Actually, in power system solutions it is not usually possible to follow
observation 2 in defining the problem so constraints as suggested in
observation 3 must be used.
Some commonly used boundary conditions for power systems are as
follows, for quantities at the kth port.
Given Pk and Qk
Pk =ea + fkbk
Qe = fydye = oPy 2%
Given Pk and 'ﬁk|
P = ey * TPy

|Ey| = (o2 + fk2)1/2 27



N = & & -
“k “kk “k’k 1/2
E| = (e 2 + fk2) 28
Given Ek and S X /
. 1/2
El = (°k2 + sz)
-1 %k
Sk = {an z-l: 29

Other equally good boundary conditions which are not common in power

system analysis are as follows.

Given].:k-akd-jbk 30
Given ﬁk =e, + 38, 31
Given likl ard P
. 2 . 21/2
%] = o” + D 32
-1 %
a g —
Q an 5,
Given likl and Sk
. 2 0. 1/2
T = (&" + 59
b4
3 = tan-l-E - 33

k €,
Still others could be devised which may be of interest in some particular
application.
Let us examine the nature of the first four constraints, equations
26, 27, 28 and 29 since these are of particular interest in the power
system problem. At load terminals it is common to use boundary conditioms

as in equations 26. These two equations in four unknowns have a doubly



2L

infinite set of solutions. However they place two constraints on our so=-

D =2 e~ ~ -~ a3 - L -
n and, Sincs 2n are necded in all, we need to find 2n 2dditiomal

(2n - 2) constraints from an examination of the boundary conditions at the
remaining (n -~ 1) ports. At generator terminals, a common form of bounda-
ry condition is that given by equations 27. Thus each generator terminal,
when specified as in equations 27, places two constraints upon the so-
lution. |

Now let us assume that (n - 1) ports of the n-port network are either
load or generator ports. Both load and generator terminations, with
boundary conditions as in equations 26 and 27, provide two constraints pér
port or 2(n - 1) = (2n - 2) in all. Since 2n are required, two more con=-
straints must be available from a knowledge of the boundary conditions at
the last port. It is at this point that one could get into real trouble
in assigning boundary conditions, for this nth port is particularly criti-
cal. For now, let us be satisfied by stating that this port, usually
called the swing generator, is usually constrained as in equations 29.
Since equations 29 completely specify the voltage of this port, we may as-
sume that ék is zero for this one terminal with no loss in generality.
In many computations this is done for simplicity. It is also clear that
the specifications of, say IEkl alone, would not provide enough infor-
mation since there would exist an infinite number of solutions corre-
sponding to all possible values of & j» From a mathematical standpoint,
it would have been equally correct to specify boundary conditions in e~
quation 33 at this nth port. As a matter of fact, this would be the con-
ditién which would be chosen if we desired to hold the swing generator at

a given value of current, for example at its maximum value. It should
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also be apparent that a specification as in equations 28 could have been

A A e ——
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amount of information as equations 27, the usual generator boundary con-
dition.
The foregoing suggests several other interesting possibilities which
mgy sometimes be useful in solving a particular problenm.
(1) It should be permissible to place three constraints on any
one port if one comstraint is removed from another port in
the network.
(2) ne port can be completely specified; i.e. & by, e and
£, (four cbnstraints) only if a total of two constraints
are removed from the remaining (n - 1) ports.
(3) Ome half the ports may be completely specified (for n even)
and the other half, although not assigned any boundary con-
ditions, will be determined uniquely in the solution.
(L) The real part of ik and l;‘.k, i.e. a, and e, respectively,
may be specified at all ports and the quadrature com=-
ponents determined as a solution.
Actually conditions 1 and 2 are often useful in power system solutions.
Conditions 3 and L are probably of academic interest only. All may easily
be proven to be workable using an A-C Network Analyzer. The equations and

solutions of some typical cases are given in Appendix C.

2. Boundary conditions at the nth port
It was suggested previously that the boundary conditions for the nth
port may be troublesome. This assumes, of course that ports 1, 2, * ° °

(n - 1) are all load or generator ports with boundary conditions given as
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equations 26 or 27 above which are common for loads and generators, re-
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ator, using boundary condition 27. We now have a condition wherein the

power, Pk, has been specified at all ports for k =1, 2, 3 * * * n. This
being the case, we should be able to sum all the powers to obtain the net

power entering the network. Using matrix notation, we may write;

n n
P, =7 P =7 ZIWAXT=x'(A +A, + +° ° c + A X
A X A Ay v Ay n
or
PL-I'an 3l
where
Gn-(Al+A2+A3+"'+An). 35

Then, performing the indicated addition,

G 0 &y O == Gy O

0 6y, 0 Gy =-— 0
G, 0 Gy O —mmm G O
0 &, 0 Gy === O G,

0 G1,11-1 0 G2,n—1 === 0 Gn-l,n
Gln 0 . GZn 0 ———— Gnn o
0 & 0 & - 0 G
Now recall the way in which the diagonal elements of Gn were defined
Guge = ~(Opg + Gep + Gz + 7 ° ° * Gy + Gg) 37

where Gko represents the conductance from k to 0, the reference node. It

is apparent immediately that the diagonal terms, Gll’ (}22, -— Gnn are at
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least as great as the negative of the sum of the remaining terms in each

row. Stated another way,

n
G = =/ 'ij
J=1
where the symbol Z' denotes the sum for all j except j = k. Bodewig

(18, p. 79) proves that a matrix satisfying this condition is positive
semi-definite. If Gn is positive semi-definite then

W

PL = x'an 0 ' 38

-or PL is also poéitive semi-definite. Actually, our original premise that
the network be passive requires this to be the case since no power can be
generated in passive elements. It is interesting to note that there are
two cases in which the equal sign of equation 38 applies: first, the
trivial case with X = O and second the case inwhichf‘j_-ﬁ.lz -1.13 - e
-5

Returning to our specification of the boundary condition at the nth
pofh, it is now clear that the sum of all generated power must be greater
than, or equal to, the sum of all load power. Should the power specified
for the nth port be too small the solution may be nonexistent and if
specified too large may give unrealistic voltages for power system oper-
ation. Tt is always safe to specify the voltage magnitude and phase angle
for this port and this is the method usually used. Unless otherwise
specified, this boundary condition will be assumed in what follows.

Before leaving this discussion of the nth port boundary condition, a
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question naturally arises regarding the reactive power losses. Following

v o mres e e vl T D, — s Arm
Wie sames argumsnv as oelfore for recal power lesses

, it is gmparent that the

S) matrix analogous to G, of equation 36 is not definite or semi-definite
because Bk 3 mgy take either a positive or a negative sign for inductive or
capacitive susceptance respectively (k # j) and the corresponding quad-
ratic form for reactive power losses may be positive or negative. However
should an examination of the network elements show, for example, that there
'are no capacitors involved, then the reactive losses are positive semi-
definite. In power systems this will seldom be the case and, in view of
the uncertainty as to the sign of reactive losses it would be better to
avoid using reactive power as a boundary condition at every port in the
network.

3. Recommended boundary conditions for power systems

Nearly all power system problems can be solved using boundary con-
ditions as specified in equations 26, 27, 28 and 29 above. Also as previ-
ously mentioned, there is no loss in generality in assuming one of the
voltages of the system to be coincident with the reference. In the so-
lutions which follow therefore, the boundary conditions used will be as
follows:

At load terminals

P ™ ol * Oy

26
Qe = fiae - by
At geperator terminals
B = 3 + 5y ;
. 1/2 27
2 2
Ekl (e + £,
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At synchronous condenser (or generator) terminals

G = Hedy - sy

. 1/2 28
2 2
] = o+ 55
At the swing generator (the nth port)
L] = e
IEkI k 29a
Sy = O.

C. Solution by Iterative Techniques

Now that the boundary conditions of the problem have been determined
a solution for the n-port network may be attempted. Three methods of so-
lution will be described in some detail. First, the Ward and Hale Tter-
ation will be outlined because of its wide acceptance by the industry as a
standard and because the technique used is typical of nearly all programs
in use today for this problem. Next, two additional techniques will be
presented and their effectiveness measured against the Ward and Hale
method.
1. The Ward and Hale Tteration

This method was outlined briefly before and the salient features of

the iteration are repeated here. The method makes use of the following re-

lationships.
o n * L n .
e = 2 gy = 2. (g + B (e + 35, 39
L= o+ iy Lo

B = o3y + 4,0y la
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. Q = e - eby h2

o . ~1/2

B = (" + £ L3

The iteratiom proceeds as follows:

(1) The voltages at all ports except that of the swing gener-
ator are estimated using some convenient value such as
1 + jO. The voltage at the swing generator is completely
specified and need not be changed as the iteration proceeds.

(2) The initial set of estimated voltages is used to compute i‘.L
using equation 39. Current I, is then used to compute P
using equation Ll1.

(3) The boundary conditions are given in terms of P, and Q or
P, and |E| depending on whether the port is a load or
generator respectively. The calculated power is compared
to the scheduled power and the reactive power or voltage
magnitude is compared to the scheduled value to determine a
correction for E’.L

(L) Current 12 is now computed using equation 39 but using the
corrected value for il Just obtained.

(5) Step 3 is repeated to determine a correction for voltage
ﬁz, and so forth.

(6) The process is repeated until the voltage corrections be-
come arbitrarily small.

The method of making the voltage corrections is also of interest.

Consider first a load port with and O’ks given as boundary conditions

Fis
(the subscript s may be thought of as meaning "scheduled"). If we define
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error quantities as APk and AQk, then

=P - £
k ks k Lh

Now assume a voltage correction is added to Ek and let this correction be
AE, =€, +3§,
such that
P+ 3Q, = (B +AENE + L AR, ks
Equation 45 can be solved to obtain
AR = el + fBg + &) * Sxl-aBy + 50 + By)
* Ggler’ + 61 |
AQ = eyleBy + fGg = B) + 6, (e Gy - By + 3)
- Bal6” + 6,0
Equations k6 are then solved for ¢, and €k as a pair of linear equations
by neglecting the higher order terms.
At gererator terminals the same reasoning is followed to obtain the
following pair of equations.
APm = F'm(em * I * a‘) * em('emerm * L% * bm)
* O(€n” * Gg)
2 > |2
- |l

2 2
® 2em£m+ megm+ (em * em ).

B3 - |5, + 25, !

Equations 47 are solved as a linear set for € n and § n by neglecting
higher order terms.

Since it is the mumber of multiplications which largely determines
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the computer time, this is analyzed as follows where M signifies mmltipli-

Cavions.

Load bus: M=)n+17

Gererator bus: M=)ln+35 W
Bere the square root routine required for generator ports is assumed e-
quivalent to 20 multiplications. Since the rmmber of 1oads is usually
greater than the mumber of generators an average value of M would be about
Ln + 20 where n is the mumber of ports.

In a method such as this one it is not always clear what is meant by
one iteration since this could be interpreted as one set of calculations
at a port or one complete cycle of calculations at n - 1 ports. For com-
parison purposes with the mthods' which follow it is better to think of
one literation as being one set of calculations at one ;;ort. Then the
total mumber of iterations will be the total of all such one-port calcu-
lations.

2. Iteration I

The Ward and Hale Iteration converges slowly by correcting the
voltage of each port in a cyclic manner. It would appear feasible.that
convergence would be more rapid if corrections could be applied simultane-
ously to two or more ports. Iteration I is a method whereby corrections
are applied simmltaneously to all n - 1 unknown port voltages.

Let the subscript s indicate "scheduled"” values as before. Further-
more define X to be the solution vector such that

P = XaX. L9
Then

P=R ~-F = X'Akx - i"Aki‘; .50
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and if we define € to be the error vector,

—

-

-
- X e C

il

then
APk =2X" € + €N E.
Note that we may also write € as
€ = (AI’AZ’AB, ¢ * o Azn.z, O, O)

e
RN

52

53

vwhere we are assuming port n to be the swing generator so that its voltage

is completely specified and Ai is the correction required for each com-

ponent of X.
Similarly for reactive power constraints we may write
AQK = 22"%:2 + g'BkZ,
and for voltage magnitude constraints we get
s |2 2 2
AIEkl Zo 1Bk * Falox * Doar T Do
- gvukz + Z'uk’é' .

Here we have defined Mk to be

and the cnes appear only in locations m, .5 5 and Wy o .
2 3

Sk

55

56

If we neglect the second order corrections, or the terms similar to

Z'Akg s We have a set of linear equations which may be solved simultane-
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ously for € . This set of equations is always 2n - 2 in number and 2n - 2
Ai corrections are found in cach
~ - A typical set of such correction equations given here for a three-
port network (n = 3) where one port is a load, one a generator and the
third is the swing generator.

APl(m) . o (m)A_lg (m+1)

Aql(m) - ,&,(m)Blg (m+1)

APZ(E) = &,(N)Azg(m*l)
57

A‘é‘a‘z(m) - 251 (m)l,I2 z (m+l)

The index (m) indicates the values used for the mth iteration.

The mumber of mzltiplicatioﬁs required for this method depends prima-
rily upon the method used for solving the simultaneous linear equations
for the correction vector. For example, a direct matrix inversion by the
Sherman-Morrison and Bartlett method (18) requires (2n - 2)3 + (2n - 2)
multiplications, where n here is the number of ports. Solution by the
triangularization method (18) reqx;ires only -g-nB - 6n° muiltiplications for
the complete solution. Since this savings is substantial it will be used
for this problem and the total multiplications per iteration is approxi-
mately gnB + lhn2 as compared with 4n + 20 for the Ward and Hale method.
Thus for n very large the savings in the mmber of iterations must be sub-
stantial if machine time is to be saved. Actually the solution of the
linear equations, such as equation 57, for the correction vector might be
improved by taking full advantage of the zeros in the coefficient matrix.
This was not done in estimating the'nhzltiplicat.ions since the savings in

multiplications should be partially offset by the increase in order coding
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which is subject to the skill of the coder, and the total number of zeros
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3. TIieration II

In Tteration I the following quadratic forms were developed from

which the iteration scheme was evident.

APk = 25E'Ak‘é + e e 52
Aqk = Z'B & + TBE sL
A|ik|2 - XME + THE 55

In Iteration I the method was based upon a linear solution of these quad-
ratic forms by neglecting the higher order terms. Iteration II, on the
other hand, is based upon using the higher order term as a correction to
the above equations to obtain a better correction vector. Using the same
three-port network as before to obtain equations analogous to equation 57,

we have the following as our iteration scheme.
Ap, @) L Ap (0 | g (), g W) _ 5, (0), ¢ (med)

AQl(ml) - Aql(o) _ -é,(m)alé(m) - &‘|(O)Blé (m+1)

58
Apz(ml) _APZ(O) - -é,(m)Azg_ (m) . &"(O)Azé(m"l)

Alﬁz 2(m+1) = A E.Iz 2(0) - gt(m) é‘(m) = 2-x~,(0)1{2-€~_(m+1)

The superscript (m) in this case refers to the iteration number. Here the
error vector will be found as the simultaneous solution of the linear
(in 2(1“1)) system of equation 58.

Both Tterations I and II require the solution of a linear set of e~
quations which we may describe as

cA=d 59
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where C is the coefficient matrix or the right-hand side of equations 57
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or 58, A is the vecior exc
two zero corrections for the nth port voltage are ;nissing. The vector d
is the column of constants, or the left-hand side of equations 57 or 58.
Note that in Iteration I the C matrix must be computed for each iteration.
In Iteration II however, an initial computation is required to find
APk(O) s AQk(o) and Alﬁkla(o) using the initially estimated voltages
() After this imitial computation the C matrix is completely de-
termined and is triangularized so that the iterations which follow alter
only d and A. This results in a substantial savings in the mmber of
multiplications, which are found to be g-n3 + 1Uin® + (26n2)N for this iter-
ation, where N is the mmber of iterations. Notice that the r° term is
required only once for making the initial computation and the multipli-
cations of each iteration vary as n2. This is a significant savings where
n is large, but must still compete with the Ward and Hale Iteration where
each iteration varies only as n to the first power.

L. Comparison of results

In order to obtain a direct comparison of the three methods and to
prove the convergence of the last two, a sample problem was programmed all
three ways. The problem chosen was that of Appendix A which shows a three;
port network with one generator, one load and a swing generator. Actually
a larger problem would be preferred but the three-port problem required
nearly all of the 102l words of storage of the Cyclone Computer, which was
the machine used for the solution.

For each iteration method a family of runs was made using a different

starting voltage vector for each run. The swing generator voltage was
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Table 1. Comparison of results of three iteration methods

Ward + Hale Iteration I Iteration IT

Run Initial

Number Voltage Iter. Mult. Tter. Mult. TIter. Mult.
1 1.0 + jO.0 15 480 5 990 9 2358
2 1.2 + jO.0 15 480 5 990 16 3942
3 1.4 + jO.0 15 L80 1 990 22 5346
L 1.6 + jo.0 16 512 6 1188 28 6750
5 1.8 + j0.0 16 512 6 1188 34 - 815k
6 2.0 + jO.0 16 512 6 1188 Lo 9558
7 1.0 + 51.0 17 Shk 7 138 F° - 65 15408
8 0.5 + j0.0 1 LL8 7 138 p®-7 1836
9 0.5 + 30.5 18 576 8 1584 Dp°-7 1836

10° 1.0 + 0.0 F° - 110 3520 6 1188 D°-11 2772

80n the 10th run, X,, was changed fram +0.1 to =0.1.

3
b‘l‘he notation F signifies "failed to converge".

®The notation D signifies "diverged".

completely specified to be 1.1 + jO and the remaining two voltages were
estimated initially at t.hé same value, then this initial voltage varied
over the range shown. The results are given in Table 1. In all runs the

8 and the iteration

error voltage components were all compared with 10
stopped when all components were less than this value., Details of the
iterative solutions are given in Appendix D.

The results show clearly that, although the mmmber of iterations in
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methods I and II may sometimes be less than those required by the Ward and
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greater. This is a result of the n3 and n2

factors required for Iter-
ations I and IT multiplications whereas the Ward and Hale multiplications
vary as n.

There are however, two factors which require comment in regard to the
mmber of iterations and multiplications. One is the variation of the
mumber of iterations with n and the other is the advantage gained by ad-
ditional zeros in the A and B matrices. In regard to the former, Dr.
Hale' has verified that the mmber of iterations for the Ward and Hale
Iteration varies approximately as n2. This is partly due to the greater
mumber of iterations required to make one correction to each voltage since
the ports are considered cyclically in the iteration process. In Tter-
ations I and II this is not necessary as all are corrected simultaneously
and the mumber of iterations should not be appreciably different from the
example of Table 1 provided the initial estimates were equally close to
the solution voltages. With regard to additional zeros in the A and B
matrices, this becomes a function of the physical system under study.
However it would be most uncommon for all transfer admittances to be
present in any system. As a matter of fact the average mmber of transfer
admittarces assoclated with any one port would seldom exceed five or six
regardless of the size of the system. A check of one of the largest

systems in Iowa, for example, gave an average value of 2.5 transfer ad-

1pr. H. W. Hale is a Professor of Electrical Engineering, Iowa State
University, Ames, Iowa



39

mittances per port, a maximum number of five and n in this case was equal
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mumber of multiplications will be greatly reduced. Systems larger than

n = 3 were not attempted in this investigation because of the limited com-
puter size. As was pointed out previously, the entire memory of the
Cyclone was required to solve the three-port problem.

Ope definite disadvantage of Iterations I and IT is the storage re-
quired for the A and B matrices which required (211)2 memory locations.
Here again, a good coding technique would take advantage of the zeros and
store only the necessary informationm.

5. Comments on elimination methods

The paper entitled "Elimination Methods for Load-Flow Studies" (17)
presented in February 1961 was mentioned in the Review of Literature. The
results of this paper parallel closely those of Iteration I presented
here. The title suggests an "elimination" method was used in solving the
linear equations for the error voltages and this was indeed the case.
However, up to the point of simmltaneous solution, the method is differ-
ent. Instead of using matrix methods for this part of the solution, the
anthors used the conmventional circuit techniques presented earlier by Ward
and Hale. This paper also uses polar coordinates in the computations in-
stead of rectangular coordinates which has the advantage of making it un-
necessary to iterate to obtain voltage magnitudes where these are given as
boundary conditions.
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IV. CONCLUSIONS

The use of matrix calculus in the solution of the power system
problems has several advantages. First, it provides a concise method of
conveying the cumbersome mathematical details of the nonlinear equations
which are to be solved. Second, once expressed in this new language, the
equations can be more easily manipulated and several methods of iteration
suggest themselves. It is quite probable, for example, that one would not
immediately think of trying Iteration II had not the equations been so
written, yet this iteration has some very desirable features not present
in Iteration I.

The practical use to which the derived iterations may be put has yet
to be proven. It is likely that their use will depend upon the system
under comsideration because of the desirability of having A and B matrices
with many zeros. However, even in the worst possible case, as repre-
sented by the three-port example discussed previously, Iteration I con-
verges at about the usual rate in spite of circuit changes for which the
Ward and Hale method fails (see run 10, Table 1). Thus, it is probable
that this iteration would find application in some systems which are not
solvable by other techniques.

Another interesting application of matrix calculus is in the ex-
pression of losses in quadratic form. Here the evaluation of the Gn
matrix shows it to be positive semi-definite, in agreement with physical
knowledge of passive circuits, and places a definite restriction of the
specification of boundary conditions for the problem. It is also evident
from an examination of the Sn matrix exactly what circuit changes will
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make that matrix, and therefore the reactive power losses, positive semi-
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our understanding of the problem in both a mathematical and a physical

sense.
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VII. APFENDICES

Appendix A. Matrices of a Three~Port Network

Consider the three-port network shown in Fig. 2 for which the A, B
and M matrices are desired. These matrices may be written from an in-

spection of equations 12, 13 and 56 as follows.

] G B, G "313_
el o 4t £ P2
Bo &, By G
0 4 T T —23' -2
2 2 o o o o
oo 0
—:13 %‘3 0 0 0 0
-;1 %3- 0 0 0 0
_ G -
12 Bip
¢] 0 5 -5 0 0
B, G,
° ° == 5 °
G - G -B
"%‘2' '21"'2 Goo 0 "? __%22
A, = 61
2 B2 G %3 n
2 2 2 2
G B
-B G
oo 52 F o o




Fig. 2. Three-port network
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Ty = Xy,
Q = X'BX 69
and
Iéklz IME.
For example,
_ o
G, B,
°© 0 =T 7T ° ° la
B, G, '
° 0 == ° °nh
G, - G, -B
L2 _12 23 23
: ] 3. 3 G 0 3 37|l
P, = [6q5L3€0sL0senst 70
27 PRttt By G, By Oy .
2 "2 22 2 2 2
G.. B
23 23
0 0 > 5 0 0 83
-B.. G
B 3 '
0 o 2 2 o o ||z
or
2
Py = Gyoep™ + Gygegeq + Ggeqes = Byjenfy - Bygeofs
2
Goofy™ + Gyofofy + Gpyfyfy + Byofyey + Byafoes. i

Appendix B. Eigenvalues and Eigenvectors of A and B Matrices

Consider first a two-port network with A and B matrices defined as in
equations 12 and 13. Since we wish to find the eigenvalues of these
matrices, we may proceed using equations 17, 18 and 19 as follows.

We have determined that



cow ¥ ¥

72

In order to simplify the algebra which will be required, let the following

substitution be made.

Gp =G
G2 _
> m
Then
FG 0 m -n|-—
0 G n m
A1 - n 0 0 ¢
-n m 0 0
Now set
det(A - A\I) = O
— -
G-\ 0 m -n
0 G=-A n m
det n n - 0 = Q,
| -n m 0] -x_
Expanding 75 we obtain the following polynomial in A

2

2
A _ 2603 4 (6% - 22 - 20222 + 262 + pd)A + (@2 + nB) =0

which has the solution

h

(5]
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:\l +g(ng + n2)

A= 3 77
We may therefore define the roots of. Al as follows.
2 2 2
Gy \/(Gu) (Glz) (312)
LR P i o/ B o B | 78
2 2 2
s - - B () ) B
A13 Al 2 2 2 2
In a similar mammer we may show that the following are eigenvalues of Az.
2 2 2
A = A = -?—2—2- +J GZL) + 622) + (f&)
A2l “A22 2 i 2z 2
79
2 2 2
v ey =220 () 2 L 2
a23 ‘A2 2 2 / 2 2
Then for matrix Bl,
: 2 2 2
-B)y “311) (312) Glz)
M1t t 7 Y (2 t\Z2 ) *\Z
80
2 2 2
. ___Bn i e A e T N 31_2)
= dm1), 2 2 2
and for matrix 32,
2 2 2
B B G
22 22 2
*g21 * P22 * * ("é") * ("2" ]
1

. m-—--x/( 2" %) . (o2

cormpleting the set of eigenvalues for the two-port networx.

In exactly the same manner the eigenvalues for the three-port network
of Fig. 2 may be determined. Since the details are repetitious and the

form of these values is quite clear, only the eigenvalues of A:I. are given
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e ,. lim 12 1hn 12 1an V2 Ip 12 1p 12
=z V) <) () <)
o - - VI (3 () (3 (B

)‘AlS =My = O
To determine the eigenvectors of these matrices we proceed as
follows. Assume, for the two-port A._L matrix, that A = XAll = )mz. Then
write
(4 - 2,17 = 0.
From this equation we may set up the following equations:
Ay W3 -~ =0
-*11372*"%“‘%'0
Wyt Wy 7 Ay < O
Wyt W < M), = O
where the quantities m and n are as defined in equation 73. The coef-

83

ficient matrix of 83 has rank two, therefore this set of equations has a
nontrivial solution. Also, because the eigenvalues are two-fold values
there are two linearly independent eigenvectors assocliated with each
eigenvalue. One possible set of eigenvectors satisfying 83 are given in
the matrix UAl below as

Fm n -luB 0 -~
Uy = % !-11 olll :n :AlB 8l
Al Al13
0 )‘A13 n m |

where



Ya

It may be easily verified that

)113().‘113 - "m)'

Al

53

Uiad1Uan = DOyy15 2020330 M0),)
where D signifies a diagonal matrix.

is orthogonal and that

85

For the two-port A2, Bl and B2 matrices respectively, we nay compute

the following.
_-m n
1 n m
1 [
A2 v
2| -n,, 0
K M23
V12 * Maz(Mog = Nx)
[_-n n
n n
Up = %ﬁl ) 0
a3
0 3
va = ‘m3(Pms - *ma)
_n m
1 m =N
U = -
B2 w
B2| gy O
|0 Ago3

Vg2 = (g = Npn)

Note that in all of these matrices, m and n are defined as in equations

73.

Tt is interesting to note that the matrices given in equations 84

“p23

-n

87

88

89

90

91

92
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through 92 can be used to transform a quadratic form into a canonical form

-~ s

as follcws.

Let

x = 0,7 23
Then, for the two-port case,

Py = X'AX = FIULAU,F

2 2 2 2
"MV Y MaFe MV Y Maud, e o

It does not appear possible however, to use the same transformation 93 to
simultaneously reduce two quadratic forms, say Pl and P2 to canonical

forms such as 9.
Appendix C. Solutions of Networks with Umusual Boundary Conditi

The following are network analyzer solutions for the three-port
network of Fig. 2 with umusual boundary conditions, similar to those dis=-
cussed in paragraph III, B. In all the problems shown, the network is the
same network with terminal admittances as given in Table 2.

Table 2. Terminal admittances for the three-port network of Fig. 2

Per Unit Mhos
Ports G 3k B ke
1-2 =1.923 9.615
2-3 -1.538 12.308
3-1 -0-676 h- 05)4

1. Solution of the three-port network with normal boundary conditions

The "normal"” boundary conditions are those as specified in equations

26, 27, 28 and 29. These are tabulated as follows, along with the network
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analygzer solution.

Table 3. Solution of network with normal boundary conditions

Boundary

Port Quantity Conditions Solution
1 Pl 2.0 2.00
Ql - 0.26

E 1.05 1.05/4°
2 P2 -3.0 -3.00
Q2 =1.5 -1.50

E 2 - 00 97‘ -ho
3 P3 - 1.08
03 - 1.85

é3 1.1/¢° 1.10/0°

2. Solution of the three-port network with unusual boundary conditions
Following are four additional solutions to the same problem as in

paragraph 1 with boundary conditions not normally encountered in power
system problems.

First consider the case of three boundary conditions on one port. As
previously discussed, it is necessary to remove one boundary condition
from another port in the systenm.

Now consider a case with four boundary conditions on one port. Note
that the total number of boundary conditions remains at six.

The next solution represents a case wherein all boundary conditions

are confined to only two ports.
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Table L. Three-port network with three constraints on one port

Boundary
Port Quantity Condition Solution
1l Pl 2.0 2.00
Q]. - lo 00
; - 1.13/2°
Q2 .105 .1 .50
éz 1.0 1.00/-5°
Qa - 1 ° 08
17:3 1.1/0° 1.10/0°

Finally, consider a case wherein the real components of all voltages
and currents are given and the quadrature components are desired. Since
the boundary conditions here are all linear, the solution will likewise be
linear. In this case the solution can be written and a set of three
linear equations solved.

We have previously defined the following.

I =& + I
B = o + 3t

Now, writing the Kirchhoff's law constraints, this time in terms of termi-

95

nal impedances rather than terminal admittances, we obtain the following.
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Table 5. Three-port network with four constraints on one port

Boundary
Port Quantity Condition Solution
1 Py 2.0 2.00
Q - 1.00
— E - o 1a3/°
2 P, -3.0 -3.00
Q, -1.5 -1.50
E, 1.0/0_ 1.00/0°
3 Py - 1.08
g - 1.08
Ey 1.1 1.10/5°
£ = 2nh + ), ¢ gl
E, = 2D + 2,0, + zz:,‘i3 96
By = Znh + 21y + 2305

Here the terminal impedances are defined in the usual way where

Zyy = By + 3Ky 97
Now by expanding equations 96 into real and quadrature components as de-
fined in 95 and 97, we obtain the following.

€ = Byjyay =Xy (b)) + Byjay = Xp5(by) + Byjay = Xp5(by)
& = Ryay =Xy (b)) + Byjay = Xy0(by) + Rygay - xzs(bs)- 98

€3 = Byyay = I3 (By) + Bypap - X3p(by) + Byzag - X34(bs)
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Table 6. Three-port network with boundary conditions
confined to two ports

Bo
Port Quantity Condition Solution
1 P 2.0 2.00
Q 1.5 1.50
E) o° 1.16/0°
2 P, -3.0 -3.00
Qz "1 05 "1 050
E, 1.0 1.00/-6°
3 P3 - l 018
Q - 2.16
1-':3 - 1.08/-1°

(£7) = By (b)) + Xyay + Byo(by) + Xypap + Ryglby) + Xygay

(£3) = Ry (by) + Xnay + Ryy(by) + Xpyay + Byg(by) + Xpyay 99

(£3) = Byy (b)) + Tpa) + Ryp(by) + Xypay + Ryy(bg) + X525
For clarity, the unknown quantities in equations 98 and 99 are shown in
parentheses. It will now be observed that equations 98 may be solved di-
rectly for bl’ b2 and b3. These values may then be substituted into e-
quations 99 to find fl, f2 and £3. Thus, with linear boundary conditions,
however umusual they may be, the network may be solved directly as linear

equations.
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Appendix D. Iterative Solutions

Table 7. Ward and Hale iterative solution

Iteration ey fl e, £2
0 1.0000 0. 0000 1.0000 0. 0000
1 1.0513 0.1377 0.9833 -0, 0895
2 1.0469 0.0922 0.9758 -0.0783
3 1.0472 0.0779 0.9751 -0.08)11
b 1.047h 0.0737 0.9751 -0.0857
5 1.0475 0.072L 0.9751 -0.0862
6 1.0475 0.0721 0.9751 -0,0863

7-15 1.0475 0.0720 0.9751 -0.086}

Table 8. Iteration I solution

Tteration el fl 32 £2
0 1.0000 0. 0000 1.0000 0.0000
2 1.0476 0.0720 0.9753 -0.086}
3=-5 1.0475 0.0720 0.9751 -0.086Y

In order to illustrate the speed of convergence of the three methods
investigated, an example is tabulated in Tables 7, 8 and 9 for all three
methods. The problem used for this puorpose is Run 1 of Table 1. This
problem was programmed to iterate until each correction term was less than

10'8 and the solution was printed out to nine significant figures. Since



Fig. 3. Flow chart for Ward and Hale Iteration
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Fig. 4. TFlow chart for Iteration I



Fig. 4. Flow chart for Tteration I
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Fig. 5. Flow chart for Iteration II
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Table 9. Iteration II solution

Iteration ey fl 32 £2
0 1.0000 0. 0000 1.0000 0.0000
1 1.0513 0.0784 0.9888 -0.08L5
2 1.0L69 0.0713 0.9757 -0,0862
3 1.0476 0.0720 0.9752 ~-0.086}

L=9 1.0475 0.0720 0.9751 -0.086L

the purpose of the tabulation here is to show only the nature of the con-
vergence, the voltages have been rounded to four places. Note that for
each iteration the initial voltage, called iteration zero, is 1.0 + 50.

The complete computer programs which solve the problem and output
data in the manner tabulated above are not important since the program
itself will probably be different if coded by different individuals. How-
ever, the flow charts from which the problems are coded are of interest
since these charts allow us to visualize the complete solution regardless
of the mamner in which it is programmed. Flow charts for the three

methods investigated are shown in Figs. 3, L and S.
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