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I. INTRODUCTION 

A. Purpose 

The purpose of this investigation is to derive some of the matrix 

properties of electric networks, especially those networks intended for the 

transmission of power, and to apply the methods of matrix calculus to the 

solution of such networks. Although the methods described are applicable 

to any linear network, it is anticipated that they will be most useful in 

the study of power systems. 

Up to the present time the power system problem has been attacked 

using primarily the known tools of circuit analysis with the expression of 

the problem in mathematical terms somewhat suppressed. This has appeared 

to be the most convenient and direct means available to solve such 

problems. However, as will be shown later, it is helpful to view the 

problem as simply a system of equations for which a solution is desired. 

Here the methods of matrix calculus are particularly powerful because of 

the simplicity with which long and complicated mathematical statements can 

be compressed using these techniques. 

It is also enlightening to set down the boundary conditions of the 

physical problem as mathematical statements. From this point it is possi­

ble to clearly determine the steps required to solve many problems in­

volving electric networks which are not usually attempted because of their 

complexity. 

B. General Description of the Power System Problem 

Because the problem under consideration has the power system as its 
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origin, a few remarks concerning the modern power system are required. 

The paths available for the flow of electric energy fr-oa generator- to con­

sumer are becoming Increasingly numerous and complex in the modern power 

system. This is due primarily to the econony inherent in very large 

generating facilities located in low fuel cost areas, often at large 

distances from load centers. This requires large networks of transmission 

lines to carry power to consumer areas and, to guard against loss of 

generating facilities, requires strong transmission ties between gener­

ating stations. This pattern has intensified over the years with the 

growth of both loads and generating stations. The transmission networks 

have become quite large in many cases and the solution of these networks 

by mathematical means has become increasingly difficult. Before digital 

computers were available these problems were usually solved on large scale 

analog computers or network analyzers which were designed specifically for 

this purpose. Now, with digital computers in wide use it is only natural 

that solutions be attempted which will utilize the speed and accuracy of 

these devices. 
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n. REVIEW QF LITERATURE 

Beginning in 191*6, articles began appearing in the literature oc­

casionally regarding the use of the digital computer or the "business ma­

chine" of that day in the solution of electric networks (1,2,3)• Up to 

that time, problems involving power systems were usually solved on network 

analyzers and little thought was concentrated on strictly mathematical so­

lutions of these systems. However, the early articles by Dunstan (2,3»10 

aroused much interest the years that followed produced several new 

methods for handling these problems. This evolution of computer usage has 

been accompanied by a closer ex ami nation of the mathematics of the problem 

and this in turn has brought forth several significant papers. 

In order to clarify the historical development of this area a few 

comments are in order regarding general methods used by other Investi­

gators. As the methods used to date fall into definite patterns as to 

type of solution, they will be discussed in this grouping rather than by 

authors. 

A. Early Attempts at Computer Usage 

In 191*6, a paper appeared (1) which outlined a solution of a power 

system problem for an accounting or business machine. In this paper the 

authors did not attempt a problem with non-linear boundary conditions. 

Instead, they assumed that both load and generator currents were known in 

magnitude and phase angle. This simplification, although quite unreal­

istic, reduced the problem to a set of linear equations which could be 

easily solved by conventional techniques using loop currents. Perhaps the 
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maim contribution of this early effort was to arouse the interest of engi­

neers in the u5c of computers. 

B. Loop and Track Methods 

Solutions to the power system problem which closely resemble the well 

known loop current technique were first proposed by Duns tan (2,3,L) • Al­

though never widely accepted, these papers contain some clever extensions 

of loop currents to loop "load loss flows" or power flows. One method (2) 

converges by a technique referred to as successive approximations in -which 

loop flow estimates are repeatedly improved until boundary conditions are 

satisfied. Another suggested method (3) requires a matrix inversion in 

each iteration to solve a loop current analogy, but appears to have a more 

serious limitation in the use of unrealistic boundary conditions. Despite 

these difficulties, these methods converge in a very few iterations. 

A later paper by Henderson (5) described another loop or track method 

based upon the earlier work of Dunstan which reduced the number of matrix 

inversions to one instead of the earlier one per iteration. In this 

method power and reactive power are used instead of current to satisfy 

Kirchhoff's voltage law. Briefly, each iteration is carried out as 

follows: First a flow of real and reactive power is estimated in each 

line. Then losses are computed and subtracted from the losses of the 

previous iteration to determine an incremental loss which in turn is ap­

plied to each mesh to determine an incremental flow. This incremental flow 

is superimposed upon the original flow to determine a new flow. Now the 

voltage and phase shift across each line is determined and loop errors are 

found which again requires a balancing flow to satisfy Kirchhoff's law. 
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This balancing flow is superimposed upon the one previously computed and 

the process is repeated. This ingenious schsss converges to "not^crlr ozo-

lyzer accuracy" in not more than three iterations according to the author. 

However, in all fairness to other authors it should be made clear that 

most methods devised are expected to converge to an accuracy several 

orders of magnitude greater than that obtainable on a network analyzer. 

C. The Ward and Hale Method (Nodal Method) 

In 1956 a paper was published by Ward and Hale (6) which has since 

become almost a standard for comparison because of its wide acceptance. 

This paper, unlike those preceding it, was based upon nodal techniques and 

was the first paper to describe a power system with its nonlinear boundary 

conditions adequately. Since it also avoided the matrix inversion re­

quired of the loop method it was indeed a major improvement. The method 

has one serious drawback however since it converges very slowly and 

therefore requires a large number of iterations unless the initial voltage 

estimates are very near the solution. 

Because of the importance of this paper and its wide use as a basis 

for comparison of new methods a few detailed comments are in order. This 

method is especially attractive for computer solution because it involves 

no matrix inversion and requires no track diagram. Iteration can be con­

tinued until all boundary conditions are satisfied to within some arbi­

trary precision index and need not be cyclic as required by some other 

methods. It's primary disadvantage is the relatively large number of 

iterations required. 

Briefly the method is carried out as follows. First all bus voltages 
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are estimated and expressed, in rectangular form using convenient values 

such aa 1 jO xOr all UÙSâéS ôXûcpu O'ùc. Cûê uuS, uâUâlly that of tixa 

swing generator, can be completely specified and held at its known value. 
• n . » 

Second, using the equation I » 7 Y, E . the total current entering the 
m-1 

first bus is calculated and from this the total power entering the bus is 

found from « Be(Ê^Î^). This power is compared with the specified load 

or generator flow for that bus. Third, assuming all other voltages remain 

constant, is corrected in a direction which will minimize the error in 

load P^ and (or P^ and for a generator). Fourth, the current e-

quation is again applied to find 1^+1 using the corrected value of in 

this calculation. P^.+̂  is computed and compared with a specified value 

and a new is found. This process is repeated until the voltage cor­

rections are smaller than a specified precision index. 

The method is convenient in its use of normally known system quanti­

ties such as per unit watts and vars at load busses and per unit watts and 

voltage magnitudes at generator busses. These are the same boundary con­

ditions normally applied to network analyzer solutions and are usually 

known by the power system engineer. The method has been found to diverge 

on some systems with negative reactances such as found many times in 

three-winding transformer equivalents. 

D. Methods of Speeding Convergence 

Following the Ward and Hale paper in 1956, several investigators (8, 

9,Hi,16) published methods for speeding convergence of the original nodal 

technique. One paper (8) presented a wide variety of schemes for ac­

complishing speed-up but these were mostly trial and error methods without 
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known mathematical analysis and many of them failed. In some cases the 

x-65ult/5 Wcï'c *-àvhôï- urwûàviû Iii ypiuô Ox wuê lûûk ÛJL pi'ûûf âjuu, xûx~ vh.6 

particular system studied, caused reductions in the number of iterations 

of about six to one. The methods used were mostly variations of the idea 

that speedup could be accomplished by multiplying the voltage corrections 

by some factor, say 1.6 or 1.7, and the multiplier was steadily increased 

until the method failed. Other methods tried by these authors included 

simultaneous correction of all bus voltages, linear convergence and relax­

ation methods. The success or failure of all these methods seemed to be 

somewhat dependent upon the physical system. 

Jordan (9) was able to reduce the number of iterations appreciably by 

applying a modified Seidel relaxation technique. Using the basic Ward and 

Hale solution, he computed a residual current for each bus and, by di­

viding the negative of this residual by the diagonal term of the T matrix 

was able to obtain a correction component for the bus voltage. The method 

used was not strictly a relaxation since he took the busses in a fixed 

order rather than selecting the largest residual for each iteration. One 

unique feature of the method was the iteration of the swing generator 

voltage which, after convergence, was then corrected to the final desired 

value by additional iterations. The method, as reported, had been tried 

only for power and reactive power boundary conditions which would limit 
* 

its application. Che should note also that, since the Y matrix is not 

positive definite the method will fail when a diagonal term is negative as 

this would force the solution toward a maximum residual (18). 

Van Ness, in a paper (lU) published in 1959 suggested several im­

provements on the Ward and Hale technique. Among these was a solution of 
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the problem in polar form for the unknown voltages. This eliminates 

solving for the voltage issgnitude at generator busses "shere rcltagc magni­

tude is usually given as one of the boundary conditions. In the same 

paper the author outlines other speed-up techniques, some of which are 

worthy of mention. One method tried was that of holding all voltage cor­

rections until they had been computed for all busses and then applying 

them simultaneously. This resulted in no improvement. A second method 

which was more successful was to make the corrections of the second iter­

ation equal to some given fraction, say 0.5, of that of the first iter­

ation, and so forth. This resulted in a definite speed-up in the con­

vergence and is analogous to the arbitrary speed-tip method presented 

earlier by Brown and Tinney (8). 

In I960, a second paper by Van Ness (16) analyzed in terms of eigen­

values the acceleration techniques discussed in his earlier paper. In 

this analysis he examined a matrix of coefficients derived by equating the 

unknown voltage and angle corrections, in polar form, to the errors com­

puted in power and reactive power. He then proceeded to show that the 

largest eigenvalue of this matrix determined the rate of convergence. 

E. Acceptance of Computer Solutions 

It is worth mentioning, in connection with the problem of digital 

computer solution of power flow problems, a few of the many publications 

relating to results of studies performed on various machines using known 

techniques of the time. A few typical of these reports are listed (10,11, 

12,13) for their value in illustrating the comparison of previously 

published methods and their handling on computers of widely different 
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size. Many more reports similar to these have appeared in the journals 

«run publications ox the engineering field and serve to illustrate the wide 

interest in the problem at hand. 

F. Recent Developments 

In a 1959 paper (15), Hale and Goodrich presented a different ap­

proach to the problem which they refer to as the transfer ratio method. 

In effect, this method iterates on voltage at busses where the voltage 

magnitude is specified and iterates on currents at the remaining busses. 

This results in a dramatic reduction in the number of iterations (from Sh 

to 10 in one case). The convergence is oscillatory for this method as 

compared to the Ward and Hale method which is usually monotonie after a 

few iterations. Furthermore, the transfer ratio method approaches the so­

lution very fast in the first few iterations after which the oscillations 

become generally quite small. Little analysis has been done as yet on the 

exact nature of this method but it may prove to be a very important tech­

nique, especially when combined with acceleration techniques. 

In February 1961 a paper (17) was presented by Van Hess at the Winter 

General Meeting of the American Institute of Electrical Engineers in New 

York City. In this paper a new and quite different approach to the 

problem was presented which the author chose to call the "Elimination 

Method". In this method the Ward and Hale technique is followed to derive 

formulas for the voltage corrections which should be applied to each bus, 

neglecting the higher order terms. Then, using the elimination method, 

the set of equations so derived are solved simultaneously for the various 

correction factors which, in the case presented, were the voltage magni­
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tude and phase angle corrections. In addition to computing simultaneous 

correction factors, acceleration factors were applied to each correction. 

The result was a marked decrease in the number of iterations although the 

time per iteration was increased. In one example given, a reduction of 

from Uo to 3 iterations was experienced whereas the time per iteration was 

about doubled. 

In the sane paper the author described a technique for applying the 

elimination and cyclic iteration in combination to the same solution. The 

result in this case was an improvement over the Ward and Hale method but 

the method could not be accelerated by any known means. 

It would appear that these last two papers have contributed much to 

our knowledge of iterative techniques. "While both need, and undoubtedly 

will receive, much study in the future, it appears that a rapidly con­

verging method will ultimately result and the digital computer will be a 

tool which power system engineers will find both economical and accurate 

for many future load flow problems. 
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in. A SOLUTION TO THE POWER SYSTEM PROBLEM 

A. General Solution in Terms of Terminal Admittances 

Electric power systems are nearly always balanced three-phase systems 

when operating under normal, steady-state conditions. For this special 

case the three-phase system can be represented on a single phase or "per 

phase0 basis with no loss in generality. The per phase basis is to be as­

sumed throughout the calculations that follow. 

Consider the n-port, passive network, S, the elements of which are 

all assumed to be within the box shown in Fig. 1. Only the terminals of 

particular interest are shown and these are designated 1, 2, 3, —-n. 

Positive convention for current direction is into the network as shown in 

the diagram, "voltages are considered as voltage rises from the reference 

node to the terminal in question as shown in the diagram by with ap­

propriate polarity. In order that phasors, such as current and voltage 

can be clearly distinguished from matrices, the phasor values each have a 

dot directly above the letter as in Fig. 1. All terminals should be 

thought of as two-terminal pairs, or ports, with the same reference termi­

nal common to all. 

Define the following. 

Using P and Q to represent power and reactive power respectively we may 

write 

\  - ek * jfk 

h m \ * ibk 

1 

2 

pk * % " VÎ " (Vk + fkV * jtVk - =kV 3 
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where (*) denotes the conjugate of the current is used. Then obviously 

?k - Vk * rkbk h 

311(1 ek13k-

Since the power and. reactive power are dependent upon the network S, we 

require additional information to solve equations U completely. The ad­

ditional constraints are supplied by Kirchhoff's law which may be stated 

as follows. 

=1 - Vl + Vg + ' ' " » ilrPn 

- % • hjg * • ' ' + 

h '  hÀ + hêz * '  ' ' + 

K - * KÂ + • • •+ y. 

Here the symbol Y is a terminal admittance which may easily be related to 

the physical admittances within the network (19). It will now be helpful 

to expand Y into its real and quadrature components. 

^kl 3 ̂ kl + jBkl 

Now, eaq>andi rig equations 5 in terms of the components we obtain the 

following. 

*1 " ̂Ll5! " Vl + G12e2 " B12f2 + * * ' + Glnen " Vn 

a2 " G21el ~ B21fl * G22e2 " B22f2 + * * * + G2nen ~ B2nfn 
6 

®n * Sil6! " Bnlfl + Gn2e2 " Bn2£2 + " " " + Gnnen ' Bnn4i 
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\ " %®1 * °ïl^l + B12e2 + °12f2 

b2 " B21el * °21fl + B22®2 + °22f2 

+ • • • + ^ln®n + °lnfn 

+ 

7 

This allows us to write the expressions for power and reactive power at 

the kth port in terms of only the voltages at that port. 

pk - * fkbk 

" ek^°klel " ̂kl^l + °k2e2 " 3k2f2 * ' ' ' * Smen " Bkilfn' 

* fk(Bklel • * Bk2e2 Gknfn) 8 

ekbk 

" fk(%a®l " Vl * °k2e2 " * * * ' * Vn * Vn1 

- * «kA * \2e2 + Va * • 1 • * Bknen * 9 

We now have expanded the expressions for F and Q to the point where, if 

the voltages are all known, the power and reactive power can be found di­

rectly. This is a convenient way to express power system quantities since 

the voltage is usually known to within a few per cent and, even when iter­

ative methods are required, the initial value chosen for the e, and f. can 

be relatively close. Rewriting equations 8 and 9 we obtain the following 

quadratic forms. 

pk - «Al6! - "tAA 1 • • • * ekGkkek - «hcWk 

+ ek°knen * «kVn * Vkl6! + fkVl 

* Vkk°k * fkGkkîk + * • • • + fk°knfn 

+ • * • + 

+ • . • 10 
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Se - fk°kiei - fkWi + • * * + Vkk^k - Wk 

+ fkGkner " " evBkiei - ev(VLfi 

" ̂k^kk^k - Wk ekBknen " ekQknfn U 

1. Calculation of the A and B matrices 

We now have the expressions for all electrical quantities usually de­

sired at any port of an n-porb system, namely current, power and reactive 

power. Furthermore, all of these quantities are expressed in terms of 

known system quantities and voltages. Thus, given the voltages, currents 

can be found from equations 5 or 6 and 7, power from 10 and reactive power 

from 11. The quantities of greatest interest to the power system engineer 

are the power and reactive power. It would therefore be to our advantage 

to be able to express power and reactive power in a simpler form than that 

given by equations 10 and 11. This can be accomplished quite easily in 

matrix notation and in a form so simple that it can easily be remembered. 

Let the matrix be defined as follows. 

°kl \l 
0 0 — 0 ^ ^ 0 — 0 0 

"BU. 0*1 
0 0 — 0 2 ' 0 —— 0 0 

GjrO ®k2 
0 0 0 -|=. -|= 0 0 0 

*k 
0 0 0 Bk>k~1 Qlc>k"1 0 0 0 

Gkl ~^kl "^k.k-l r Q ^k.k+l ^kn "*Bkn 
— 1 2 °kk ° —2 T ~ 

^kl Gkl S.k-l n r ^k.k+l ^kn ^cn 
— — 2 0 °kk r — 

0 0 0 0 0 0 

-B. G. 
0 0 0 0 0 0 

12 
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Similarly, let be defined as follows. 

®k 

0 0 
2 

"kl 
2 

0 

0 0 
"°kl 
2 

-&L 
2 

0 ——— 0 

0 0 0 
-Bk2 
2 

°k2 
2 

o 0 

0 0 0 "^k.k-l 
2 

-Bk.k-1 
2 

0 

2 
•°kl 
2 

"^k.k-1 
2 "%k 

0 !
 

1 -°kn 
2 

Sâ 
2 

... _Bk.k-l 
2 

0 
-%k 

°k.k+l 
2 

-^n 
2 

0 0 ——— 0 
-Bk,k+1 

2 
^k.k+l 
2 

0 0 

0 0 ——™ 0 
"°kn 
2 

"Bkn 
2 

0 0 

13 

Also define, using the prime symbol to indicate transpose, the following 

vector of voltage components. 

*' • (v'i-W ' ' "'vV ^ 

We can now express power and reactive power quite simply as follows. 

pk - i'V # 

Sc - 2 V M 

For clarification, the complete A and B matrices for a three-port network 

are shown in Appendix A. It will be noted that both matrices A and B are 

symmetric and, with a little practice, could easily be written from memo­

ry. Also, using the matrix notation for the quadratic form, the expansion 
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to obtain power or reactive power on a digital computer are quite clear 

without 5*v reference to details regarding the individual elements, It is 

only necessary to store the x vector and the A or B matrix in an orderly 

manner in the computer memory and expand directly with a minimum of com­

puter orders. This form is also unique in that both power and reactive 

power may be determined directly without any reference whatsoever to the 

currents at each port. 

2. Properties of the A and B matrices 

It was mentioned previously that the A and B matrices are symmetric. 

It should also be noted that many of the elements are zero and that the 

zeros are grouped in blocks which are symmetric about the major diagonal. 

Thus, because of the zeros, any matrix multiplication involving these 

matrices will be greatly simplified if advantage is taken of their 

presence. Also, since the matrices are symmetric the eigenvalues of the 

matrices are all real and the linear spaces of eigenvectors may be spanned 

by real vectors (20). 

Since the eigenvalues of a matrix reveal so clearly the properties of 

the matrix it would be helpful to know the eigenvalues of matrices A and 

B. Taking matrix A first, and defining X to be an eigenvalue of A, we can 

write 

Au - Xu 17 

where u is a nonzero vector. Equation 17 can also be written in the form 

(A - XI)u - 0 18 

where I is the identity matrix. Since matrix A is a 2n x 2n matrix, n 

being the number of ports, then I is also 2n x 2n and u is a 1 x 2n 

vector. Equation 18 has non-trivial solutions only if 
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det(A - XI) » 0. 19 

At this point it vill bo easier to solve equation 19 for a specific Hatri* 

A of a given size. Appendix B gives the detailed calculations for cases 

with n equal to two and three. It appears obvious from an inspection of 

these results that A and B matrices of any size network will have two two­

fold eigenvalues and the remaining (2n - It) eigenvalues will all be zero. 

Also, because of the nature of these eigenvalues, the eigenvalues of the 

matrices and B^ for the kth port of an n-port network may be written by 

induction as follows. For A^ 

°kk 

Akl Ak2 
°k2 
2 ¥) 

¥ 
+... +|^e| 20 

" XM '¥1 

=w ^k.k-l) f ^k.k+1 
2 \ 2 

•HP 
1/2 

. 2 I 

XAk5 " XAk6 ' " XAk,2n " 0 

21 

22 

and for B^ 
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"Bkl = "Bk2 W - W  [¥; 
M * - M  

+ • • • + 

( ¥  

°k.k-] 

1/2 

XBk3 " ̂BkU 

23 

*f - Ftf -

• (¥)  • (¥ •• • •* ( s¥a  

>] 
2 

* +l "T1 + 

• fte\ • + 
V 

1/2 

2U 

>Bk5 " *Bk6 " ' ' ' ™ *Bk,2n " °" 25 

Since the A and B matrices are symmetric the eigenvalues should be 

real. This is certainly true since all terms within the radical are 

squared, terms. 

It is also possible to draw some conclusions concerning the rank of 

the A and B matrices. Since any symmetric matrix may be transformed by an 

orthogonal matrix U such that U'AU is a diagonal matrix with each X of A 

occupying one of the diagonal positions, then all A and B matrices have 

rank four. Since A and B are always of rank four the quadratic form x'ix 

is also said to have rank four. We should also note that the eigenvalues 

of A and B always come in pairs. There are, therefore, two linearly inde­

pendent eigenvectors associated with each eigenvalue. 
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One additional property of these matrices that requires investigation 

is that of dsfiritensss. &is is especially important in 2 errs iterative 

techniques where the form must be positive definite or positive semi-defi­

nite to guarantee convergence (18). An examination of the eigenvalues of 

A and. B show that these matrices are certainly not definite. This agrees 

with physical reasoning since we know that or may take on either 

positive, negative or zero values. 

3. Properties of the elements of the A and B matrices 

Now that the A and B matrices have been determined, some comments are 

in order regarding the individual elements of these matrices. These ele­

ments consist of the real or quadrature components of the terminal ad­

mittances. Kimbark (19) indicates the method of computing these ad­

mittances as, in fact, do many other texts in electrical engineering. 2h 

general, if we let y represent any physical admittance within the network, 

then 

%kk - ?kl + ?k2 * 7k3 * • ' ' + ?kn + fkO 

where 0 refers to the reference node and 

*km " -7k* 1&ere k fLm
' 

These admittances are usually referred to as the self- and nmtual-ad-

mittances respectively, or simply as the terminal admittances. Once the 

network impedances or admittances are known it is a simple matter to com­

pute the terminal admittances. 

One common problem which often arises in power system analysis is the 

handling of voltage transformations. Ward and Bale (6) have presented a 

convenient method for attacking this problem. The method will not be re­
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peated here except to state that the turns ratio of the transformer ef­

fects both IVk at the node to which the transformer is connected and the 

•^ka transformer self admittance. These admittances can be calcu­

lated in terms of N, the turns ratio, and N can then be inserted as part 

of the data and altered as desired. 

Another problem -which is sometimes troublesome, especially in iter­

ative solutions, is the presence of a node «.thin the network which is not 

identified as a terminal. Two methods of handling such nodes are availa­

ble. First, the node can be considered as a load terminal with zero power 

and reactive power as boundary conditions. The only trouble with this 

method is that the boundary conditions are satisfied in two different 

ways. One solution gives the correct voltage at all nodes such that zero 

power and reactive power results. The other solution is that of zero 

voltage, which is an unwanted solution. "Where the presence of such an in­

ternal node is troublesome a second method of attack can be recommended 

without reservation. This is the elimination of the unwanted node by 

means of a star-mesh transformation. 

B. Boundary Conditions in Power System Problems 

Before proceeding with the solution of the network, the boundary con­

ditions must be assigned. Since there is no unique set of boundary con­

ditions for problems of this type it is necessary that all the most likely 

boundary conditions be examined so that some general conclusions may be 

drawn regarding the consistency of the equations to be solved. 

1. Bales for determining a consistent set of boundary conditions 

Consider the n-port network of Fig. 1 with current, voltage, power 
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and reactive power defined, as before in equations 1, 2 and U respectively. 

tangular form of the voltages or currents. We now make the following 

observations : 

(1) For an n-port network there are lya variables, namely a^, 

t^, e]£ and ffc for k - 1, 2, 3, " • • nj 

(2) In order to express the problem mathematically so that one 

or more solutions are possible, exactly half of the 1# 

variables, or 2n must be specified and 2n equations must 

be written, or; 

(3) If, for some reason we are unable to specify 2n variables 

explicitly, 2n independent constraints must be specified 

which are functions of the lya variables, and 2n equations 

must be written. 

Actually, in power system solutions it is not usually possible to follow 

observation 2 in defining the problem so constraints as suggested in 

observation 3 must be used. 

Some commonly used boundary conditions for power systems are as 

follows, for quantities at the kth port. 

Given Pk and 

pk * Vk + Vk 

"k * Vk - w 
26 

1/2 
27 
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Given Qk and |Ek| 

* fkTc " =kkk 

W - V * 28 

Given jÉ^j and S k 

h\ • (ek2 * fk2)1/2 

S, - tan"1 r 29 
K xk 

Other equally good boundary conditions tahich are not common in power 

system analysis are as follows. 

Given 3^ « a^ + jb^ 30 

Given » ek + jfk 31 

Given |ijJ and 

I * I o 2 
W - < " k  ̂  3 2  

9 " tan ~ —— 
®k 

Given I il and S, 

M " (V • 

5k • tan 1 ~ 33 
k 

Still others could be devised -which may be of interest in some particular 

application. 

Let us examine the nature of the first four constraints, equations 

26, 27, 28 and 29 since these are of particular interest in the power 

system problem. At load terminals it is common to use boundary conditions 

as in equations 26. These two equations in four unknowns have a doubly 
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infinite set of solutions. However they place two constraints on our so­

lution and., since 2n are nssdsd in all, *..*c need to find zn additional 

(2n - 2) constraints from an examination of the boundary conditions at the 

remaining (n - 1) ports. At generator terminals, a common form of bounda­

ry condition is that given by equations 27. Thus each generator terminal, 

when specified as in equations 27, places two constraints upon the so­

lution. 

Now let us assume that (n - 1) ports of the n-port network are either 

load or generator ports. Both load and generator terminations, with 

boundary conditions as in equations 26 and 27, provide two constraints per 

port or 2(n - 1) » (2n - 2) in all. Since 2n are required, two more con­

straints must be available from a knowledge of the boundary conditions at 

the last port. It is at this point that one could get into real trouble 

in assigning boundary conditions, for this nth port is particularly criti­

cal. For now, let us be satisfied by stating that this port, usually 

called the swing generator, is usually constrained as in equations 29. 

Since equations 29 completely specify the voltage of this port, we may as­

sume that is zero for this one terminal with no loss in generality. 

In many computations this is done for simplicity. It is also clear that 

the specifications of, say alone, would not provide enough infor­

mation since there would exist an infinite number of solutions corre­

sponding to all possible values of S ̂  From a mathematical standpoint, 

it would have been equally correct to specify boundary conditions in e-

quation 33 at this nth port. As a matter of fact, this would be the con­

dition which would be chosen if we desired to hold the swing generator at 

a given value of current, for example at its maximum value. It should 
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also be apparent that a specification as in equations 28 could have been 

used «v any gëriôïa'tiOï- except thé Swing gencpator- as these convsy the 50255 

amount of information as equations 27, the usual generator boundary con­

dition. 

The foregoing suggests several other interesting possibilities which 

may sometimes be useful in solving a particular problem. 

(1) It should be permissible to place three constraints on any 

one port if one constraint is removed from another port in 

the network. 

(2) Ctae port can be completely specified; i.e. a^, b^, e^ and 

f^ (four constraints) only if a total of two constraints 

are removed from the remaining (n - 1) ports. 

(3) One half the ports may be completely specified (for n even) 

and the other half, although not assigned any boundary con­

ditions, will be determined uniquely in the solution. 
• • 

(k) The real part of and i.e. and e^ respectively, 

may be specified at all ports and the quadrature com­

ponents determined as a solution. 

Actually conditions 1 and 2 are often useful in power system solutions. 

Conditions 3 and k are probably of academic interest only. All may easily 

be proven to be workable using an A-C Network Analyzer. The equations and 

solutions of some typical cases are given in Appendix C. 

2. Boundary conditions at the nth port 

It was suggested previously that the boundary conditions for the nth 

port may be troublesome. This assumes, of course that ports 1, 2, * * * 

(n - 1) are all load or generator ports with boundary conditions given as 
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equations 26 or 27 above which are common for loads and generators, re­

spectively. Suppose for ezszple, pert z. vers also constrained es z gener­

ator, using boundary condition 27. We now have a condition wherein the 

power, P^, has been specified at all ports for k » 1, 2, 3 * * * n. This 

being the case, we should be able to sum all the powers to obtain the net 

power entering the network. Using matrix notation, we may write; 

PL " Pk • *5'(A1 * A2 * b * ' ' ' * Vs 

or 

P, -x1 GJc ii n 

where 

°n " (A1 * *2 * b * ' ' 

Then, performing the indicated addition, 

+ An). 

G n "  

0 
^2 

0 
^Ln 

0 

0 Gil 0 G12 

°L2 0 °22 0 G2n 
0 

0 0l2 0 °22 °2n 

0 °l,n-l 0 G2,n-1 Gn-l,n 

0 °2n 0 
nn 

0 

0 0 °2n Gnn _ 

3U 
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Now recall the way in which the diagonal elements of Gfi were defined 

°kk " "(Gkl * <*2 * "kS * ' ' ' * °kn * V 37 

where represents the conductance from k to 0, the reference node. It 

is apparent immediately that the diagonal terms, , Ggg, are at 
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least as great as the negative of the sun of the remaining terms in each 

row. Stated another way, 

% 
3-1 

where the symbol 22 ' denotes the sum for all j except j • k. Bodewig 

(18, p. 79) proves that a matrix satisfying this condition is positive 

semi-definite. If is positive semi-definite then 

P, • x'G x « 0 38 
L n 

- or P^ is also positive semi-definite. Actually, our original premise that 

the network be passive requires this to be the case since no power can be 

generated in passive elements. It is interesting to note that there are 

two cases in which the equal sign of equation 38 applies: first, the 

• • • 

trivial case with x • 0 and second the case in which E^ = Eg • E^ • * * * 

Returning to our specification of the boundary condition at the nth 

port, it is now clear that the sum of all generated power must be greater 

than, or equal to, the sum of all load power. Should the power specified 

for the nth port be too small the solution may be nonexistent and if 

specified too large may give unrealistic voltages for power system oper­

ation. It is always safe to specify the voltage magnitude and phase angle 

for this port and this is the method usually used. Unless otherwise 

specified, this boundary condition will be assumed in what follows. 

Before leaving this discussion of the nth port boundary condition, a 
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question naturally arises regarding the reactive power losses. Following 

the sams argument =s bsfcrs for real pcusr losses, it is apparent that- the 

Sk matrix analogous to of equation 36 is not definite or semi-definite 

because may take either a positive or a negative sign for inductive or 

capacitive susceptance respectively (k / j) and the corresponding quad­

ratic form for reactive power losses may be positive or negative. However 

should an examination of the network elements show, for example, that there 

are no capacitors involved, then the reactive losses are positive semi-

definite. In power systems this will seldom be the case and, in view of 

the uncertainty as to the sign of reactive losses it would be better to 

avoid using reactive power as a boundary condition at every port in the 

network. 

3. Recommended boundary conditions for power systems 

Nearly all power system problems can be solved using boundary con­

ditions as specified in equations 26, 27» 28 and 29 above. Also as previ­

ously mentioned, there is no loss in generality in assuming one of the 

voltages of the system to be coincident with the reference. In the so­

lutions which follow therefore, the boundary conditions used will be as 

follows: 

At load terminals 

pk • Vk + fkbk 26 

"k " Vk " ekbk 

At generator termi nal s 

pk - Vk • % 
. , , 2 1/2 27 

" <6k * fk2> 
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At synchronous condenser (or generator) terminals 

rs __ J> - ^ V 

" xk°k " ekuk 

W - (ek2 » V)1/2 
28 

At the swing generator (the nth port) 

K\ - = k  
29a 

C. Solution by Iterative Techniques 

Now that the boundary conditions of the problem have been determined 

a solution for the n-port network may be attempted. Three methods of so­

lution will be described in some detail. First, the Ward and Hale Iter­

ation will be outlined because of its wide acceptance by the industry as a 

standard and because the technique used is typical of nearly all programs 

in use today for this problem. Next, two additional techniques will be 

presented and their effectiveness measured against the Ward and Hale 

method. 

1. The Ward and Hale Iteration 

This method was outlined briefly before and the salient features of 

the iteration are repeated here. The method makes use of the following re 

lationships. 

- z V, - i (Gto • • iV 
m«i m"L 

*k " =k * ibk 

pk " + fkbk 

39 

III 

ho 
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- % " Ik3k ' ekbk b 

„ 1/2 
\K\ • <V * * 

The iteration proceeds as follows: 

(1) The voltages at all ports except that of the swing gener­

ator are estimated using some convenient value such as 

1 + jO. The voltage at the swing-generator is completely 

specified and need not be changed as the iteration proceeds. 

(2) The initial set of estimated voltages is used to compute 

using equation 39. Current is then used to compute 

using equation 1*1. 

(3) The boundary conditions are given in terms of and or 

P^ and | Ègj depending on whether the port is a load or 

generator respectively. The calculated power is compared 

to the scheduled power and the reactive power or voltage 

magnitude is compared to the scheduled value to determine a 

correction for È^. 

(U) Current Ig is now computed using equation 39 but using the 

corrected value for just obtained. 

(5) Step 3 is repeated to determine a correction for voltage 

Eg, and so forth. 

(6) The process is repeated until the voltage corrections be­

came arbitrarily small. 

The method of making the voltage corrections is also of interest. 

Consider first a load port with P^ and given as boundary conditions 

(the subscript s may be thought of as meaning "scheduled"). If we define 
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error quantities as A and A Q^, then 

APk = Pks ~ Pk 

A9k " - V 

Ui 

Now assume a voltage correction is added to and let this correction be 

Ai. - e. + j ç. 
'k 

such that 

h$ 

1*6 

Pks + JScs - (*k +Aik)(Ik + • 

Equation b$ can be solved to obtain 

APk * ^k^Sdc + + *k^ + ^k^"^k%k * fkSdc * 

* «W6^ - ?k2) 

AQk " ek("®lAk + *&k - V + ^k("ekGkk - fAk + ak) 

-^{ék2+ ̂ k2)-

Equations 1$6 are then solved for é ̂  and as a pair of linear equations 

by neglecting the higher order terms. 

At generator terminals the same reasoning is followed to obtain the 

following pair of equations. 

Apm " £m^emSaa + + + + + 

+ f,=) 

12 A 
si E » + A E »,  m 

hi 

< e m 2 *  ? m 2 ) "  

Equations 1*7 are solved as a linear set for £ m and f by neglecting 

higher order terms. 

Since it is the number of multiplications which largely determines 
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the computer time, this is analyzed as follows where M signifies multipli-

CtivlviaS • 

Load bus: H • lm • 17 
h8 

Generator bus: M » l*n + 3$ 

Here the square root routine required for generator ports is assumed e-

quivaleirb to 20 multiplications. Since the number of loads is usually 

greater than the number of generators an average value of M would be about 

lya + 20 where n is the number of ports. 

In a method such as this one it is not always clear what is meant by 

one iteration since this could be interpreted as one set of calculations 

at a port or one complete cycle of calculations at n - 1 ports. For com­

parison purposes with the methods which follow it is better to think of 

one iteration as being one set of calculations at one port. Then the 

total number of iterations will be the total of all such one-port calcu­

lations. 

2. Iteration I 

The Ward and Hale Iteration converges slowly by correcting the 

voltage of each port in a cyclic manner. It would appear feasible that 

convergence would be more rapid if corrections could be applied simultané -

ously to two or more ports. Iteration I is a method whereby corrections 

are applied simultaneously to all n - 1 unknown port voltages. 

Let the subscript s indicate "scheduled" values as before. Further­

more define X to be the solution vector such that 

pks - Z'V-

Then 

pk - pks - pk - *V - *'*?•> 50 
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51 

52 

53 

and if we define e to be the error vector, 

ï - X -r 6 

then 

AP^ = 2x'A^ 6 + 6*Aj£6. 

Note that we may also write 6 as 

^ • (A^,A^,A^, * A2n-2* 

where we are assttming port n to be the swing generator so that its voltage 

is completely specified and A^ is the correction required for each com­

ponent of x". 

Similarly for reactive power constraints we may write 

Ao% -

and for voltage magnitude constraints we get 

A 2 " 2x2k-lA2k-l + 2îC2KA2k + A2k-1 + A2k 

- 2x1Mke + 

Here we have defined to be 

0 * ** •* 0 0 - - - 0 

5U 

55 

"k 

o - — — 1 

0 — — — 0 

0 — — — 0 

1 — — — 0 
56 

0 — — — 0 0 — — — 0 

and the ones appear only in locations m^^ 2k-\ 311(1 ^2k 2k" 

If we neglect the second order corrections, or the terms similar to 

e'Ajçé , we have a set of linear equations which may be solved simultané-
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ously for 6 . This set of equations is always 2n - 2 in number and 2n - 2 

/\^ eojrx-eetioriS are found in each iteration. 

A typical set of such correction equations given here for a three-

port network (n » 3) where one port is a load, one a generator and the 

third is the swing generator. 

Ar^ - 2& <**> 

Aq^ - (lMl) 

AP,W - 2 2 2 S7 

Aji2|2W - &(m)M2?(mti) 

The index (m) indicates the values used for the mth iteration. 

The number of multiplications required for this method depends prima­

rily upon the method used for solving the simultaneous linear equations 

for the correction vector. For example, a direct matrix inversion by the 

Sherman-Morrison and Bar tie tt method (18) requires (2n - 2)^ + (2n - 2) 

multiplications, where n here is the number of ports. Solution by the 

triangularization method (18) requires only yc? - 6n^ multiplications for 

the complete solution. Since this savings is substantial it will be used 

for this problem and the total multiplications per iteration is approxi­

mately + Utn2 as compared with Ijn + 20 for the Ward and Hale method. 

Thus for n very large the savings in the number of iterations must be sub­

stantial if machine time is to be saved. Actually the solution of the 

linear equations, such as equation 57, for the correction vector might be 

improved by taking full, advantage of the zeros in the coefficient matrix. 

This was not done in estimating the multiplications since the savings in 

multiplications should be partially offset by the increase in order coding 
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which is subject to the skill of the coder, and the total number of zeros 

4 a v 4 o •> AT» +V>O r»s»T r>û4*.xxn>»V. 

3» Iteration II 

In Iteration I the following quadratic foras were developed from 

which the iteration scheme was evident. 

APk - 2x'A%e + 52 

Aq^ - + e'^e 5U 

A ^ l 2  -  2 x ' M k e  +  f e i l ^ e  5 5  

In Iteration I the method was based upon a linear solution of these quad­

ratic forms by neglecting the higher order terms. Iteration H, on the 

other hand, is based upon using the higher order term as a correction to 

the above equations to obtain a better correction vector. Using the same 

three-port network as before to obtain equations analogous to equation 57» 

we have the following as our iteration scheme. 

Ap1
(m+1) - AP]̂ ) - (=) « 2x'(0)A1e(m+1) 

Ag^m+l) . AQ1
(0) - (m+1) 

Ap (m+D ,Ap (°) _ g,(n)A g(m) „ 25E«(0)Ane (nvKL) 

A E2 
2(m+1) „ A Ê2|2(0) _ (0)^£ (m+1) 

The superscript (m) in this case refers to the iteration number. Here the 

error vector will be found as the simultaneous solution of the linear 

(in system of equation 58. 

Both Iterations I and H require the solution of a linear set of e-

quations which we may describe as 

G A » d 59 
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•where C is the coefficient matrix or the right-hand side of equations 57 

or* 5v, is *tuc ToGvOi' of cOiJL'sctions «rid is ths as c ths 

two zero corrections for the nth port voltage are missing. The vector d 

is the column of constants, or the left-hand side of equations 57 or 58. 

Note that in Iteration I the C matrix must be computed for each iteration. 

In Iteration II however, an initial computation is required to find 

APk̂ °\ A^<°> and AjÊjJ2̂  using the initially estimated voltages 

x^®\ After this initial computation the C matrix is completely de­

termined and is triangularized so that the iterations which follow alter 

only d and A. This results in a substantial savings in the number of 

multiplications, which are found to be joP + lljn2 + (26n2)N for this iter­

ation, where N is the number of iterations. Notice that the xP term is 

required only once for making the initial computation and the multipli-

2 cations of each iteration vary as n . This is a significant savings where 

n is large, but must still compete with the Ward and Hale Iteration where 

each iteration varies only as n to the first power. 

U. Comparison of results 

In order to obtain a direct comparison of the three methods and to 

prove the convergence of the last two, a sample problem was programmed all 

three ways. The problem chosen was that of Appendix A which shows a three-

port network with one generator, one load and a swing generator. Actually 

a larger problem would be preferred but the three-port problem required 

nearly all of the 102lt words of storage of the Cyclone Computer, which was 

the machine used for the solution. 

For each iteration method a family of runs was made using a different 

starting voltage vector for each run. The swing generator voltage was 



www.manaraa.com

37 

Table 1. Comparison of results of three iteration methods 

Ward + Hale Iteration I Iteration H 
Bon Initial 
Number Voltage Iter. Mult. Iter. Mult. Iter. Mult. 

1 1.0 + jO.O 15 h80 5 990 9 2358 

2 1.2 + jO.O 15 U80 5 990 16 39U2 

3 i.U + jO.o 15 14.80 5 990 22 53146 

h 1.6 + jO.O 16 512 6 1188 28 6750 

5 

o
 
o
 

v> + 
CO H
 16 512 6 1188 3k - 815U 

6 2.0 + jO.O 16 512 6 1188 1*0 9558 

7 1.0 + jl.0 17 Shk 7 1386 Fb - 65 15U08 

8 0.5 + 30.0 1it m 7 1386 Dc - 7 1836 

9 o.5 * 30.5 18 576 8 158k DC - 7 1836 

10a 1.0 * 30.0 Fb - no 3520 6 1188 Dc - 11 2772 

a0n the 10th run, was changed frco +0.1 to -0.1. 

^The notation F signifies "failed to converge". 

°The notation D signifies "diverged". 

completely specified to be 1.1 + jO and the remaining two voltages were 

estimated initially at the same value, then this initial voltage varied 

over the range shown. The results are given in Table 1. In all runs the 
O 

error voltage components were all compared with 10™ and the iteration 

stopped when all components were less than this value. Details of the 

iterative solutions are given in Appendix D. 

The results show clearly that, although the number of iterations in 
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methods I and II may sometimes be less than those required by the Ward and 

A Iteration, the cuabêi- of saltiplications, or machins tizs, is =%ck 

greater. This is a result of the rP and n2 factors required for Iter­

ations I and II multiplications whereas the Ward and Hale multiplications 

vary as n. 

There are however, two factors which require comment in regard to the 

number of iterations and multiplications. One is the variation of the 

number of iterations with n and the other is the advantage gained by ad­

ditional zeros in the A and B matrices. In regard to the former, Dr. 

Hale has verified that the number of iterations for the Ward and Hals 

o 
Iteration varies approximately as n . This is partly due to the greater 

number of iterations required to make one correction to each voltage since 

the ports are considered cyclically in the iteration process. In Iter­

ations I and H this is not necessary as all are corrected simultaneously 

and the number of iterations should not be appreciably different from the 

example of Table 1 provided the initial estimates were equally close to 

the solution voltages. With regard to additional zeros in the A and B 

matrices, this becomes a function of the physical system under study. 

However it would be most uncommon for all transfer admittances to be 

present in any system. As a matter of fact the average number of transfer 

admittances associated with any one port would seldom exceed five or six 

regardless of the size of the system. A check of one of the largest 

systems in Iowa, for example, gave an average value of 2.5 transfer ad-

^Dr. H. W. Hale is a Professor of Electrical Engineering, Iowa State 
University, Ames, Iowa 
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mittances per port, a maximum number of five and n in this case was equal 

to li+C. If full advantage is taken of these zeros in tixe aatriz the 

number of multiplications will be greatly reduced. Systems larger than 

n - 3 were not attempted in this investigation because of the limited com­

puter size. As was pointed out previously, the entire memory of the 

Cyclone was required to solve the three-port problem. 

Gbe definite disadvantage of Iterations I and H is the storage re-

quired for the A and B matrices which required (2n) memory locations. 

Here again, a good coding technique would take advantage of the zeros and 

store only the necessary information. 

5. Comments on elimination methods 

The paper entitled "Elimination Methods for load-Flow Studies" (17) 

presented in February 1961 was mentioned in the Review of Literature. The 

results of this paper parallel closely those of Iteration I presented 

here. The title suggests an "elimination" method was used in solving the 

linear equations for the error voltages and this was indeed the case. 

However, up to the point of simultaneous solution, the method is differ­

ent. Instead of using matrix methods for this part of the solution, the 

authors used the conventional circuit techniques presented earlier by Ward 

and Hale. This paper also uses polar coordinates in the computations in­

stead of rectangular coordinates which has the advantage of making it un­

necessary to iterate to obtain voltage magnitudes where these are given as 

boundary conditions. 
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IV. CONCLUSIONS 

The use of matrix calculus in the solution of the power system 

problems has several advantages. First, it provides a concise method of 

conveying the cumbersome mathematical details of the nonlinear equations 

which are to be solved. Second, once expressed In this new language, the 

equations can be more easily manipulated and several methods of iteration 

suggest themselves. It is quite probable, for example, that one would not 

immediately think of trying Iteration H had not the equations been so 

written, yet this iteration has some very desirable features not present 

in Iteration I. 

The practical use to which the derived iterations may be put has yet 

to be proven. It is likely that their use will, depend upon the system 

under consideration because of the desirability of having A and B matrices 

with many zeros. However, even in the worst possible case, as repre­

sented by the three-port example discussed previously, Iteration I con­

verges at about the usual rate in spite of circuit changes for which the 

Ward and Hale method fails (see run 10, Table 1). Thus, it is probable 

that this iteration would find application in some systems which are not 

solvable by other techniques. 

Another interesting application of matrix calculus is in the ex­

pression of losses in quadratic fona. Here the evaluation of the Gn 

matrix shows it to be positive semi-definite, in agreement with physical 

knowledge of passive circuits, and places a definite restriction of the 

specification of boundary conditions for the problem. It is also evident 

from an examination of the SQ matrix exactly what circuit changes will 
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make that matrix, and therefore the reactive power losses, positive semi-
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our understanding of the problem in both a mathematical and a physical 

sense. 
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VU. APPENDICES 

Appendix A. Matrices of a Three-Port Network 

Consider the three-port network shown in Fig. 2 for which the A, B 

and M matrices are desired. These matrices may be written from an in­

spection of equations 12, 13 and 56 as follows. 

*11 
0 -*12 

2 
-^2 
2 2 

0 On 
*12 
2 

G12 
2 % ¥ 

^12 
2 

*12 
2 

0 0 0 0 

'*12 
2 

^2 
2 

0 0 0 0 

% ¥ 0 0 0 0 

> % 0 0 0 0 

0 0 
°12 
2 

*12 
2 

0 0 

0 0 "*12 
2 

®L2 
2 

0 0 

*12 
2 

'*12 
2 °22 0 ¥ * 

*12 
2 2 2 

2a 
2 

0 0 2a 
2 2 

0 0 

0 0 
2 ¥ 0 0 



www.manaraa.com

Fig. 2. Three-port network 
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We may then write 

X» Ve» 

and 

E, 2 - x r  
V" 
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or 

P2 * G22e2 + G12e2el + G23e2e3 "* B12e2fl " B23®2f3 

+ G22f22 + Q12f2fl + G23f2f3 * ̂ L2f2®l + B23f2®3* 71 

Appendix B. Eigenvalues and Eigenvectors of A and B Matrices 

Consider first a two-port network with A and B matrices defined as in 

equations 12 and 13* Since we wish to find the eigenvalues of these 

matrices, we may proceed using equations 17, 18 and 19 as follows. 

We have determined that 
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In order to simplify the algebra which will be required, let the following 

substitution be made. 

% l - 8  

Then 

G 0 m -n 

0 G n m 

m n 0 0 

-n m 0 0 

Now set 

det(A - XI) • 0 

73 

7k 

G-X 0 m -n 

0 G—X n m 
det 

m n -X 0 
• 0. 75 

-n m 0 -X 

Expanding 75 we obtain the following polynomial in X 

X1*- 2GX3 + (G2 - 2m2 - 2n2)X2 
2 

+ 2G(m2 + n2)X + (m2 + n2) » 0 76 

which has the solution 
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X - | -V °2 * * "2>. 77 

Me may therefore define the roots of as follows, 

78 
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In a similar maimer we may show that the following are eigenvalues of A^. 
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21 

81 

-B 22 

completing the set of eigenvalues for the two-port network. 

In exactly the same manner the eigenvalues for the three-port network 

of Fig. 2 may be determined. Since the details are repetitious and the 

form of these values is quite clear, only the eigenvalues of are given 
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here. 
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Al$ • XA16 " u 

To determine the eigenvectors of these matrices we proceed as 

follows. Assume, for the two-port A^ matrix, that X • Xavt - XA1 Then 

write 

(^1 " \i 1 Î y 0. 

From this equation we may set up the following equations: 

W1 * «0-3 - =oru - o 

V3y2 * "®3 * "®ii " 0 

»®i + ̂  " XAiiy3 " 0 

Tj. • *r2 - - 0 

where the quantities m and n are as defined in equation 73* The coef­

ficient matrix of 83 has rank two, therefore this set of equations has a 

nontrivial solution. Also, because the eigenvalues are two-fold values 

there are two linearly independent eigemrectors associated with each 

eigenvalue. One possible set of eigenvectors satisfying 83 are given in 

the matrix below as 
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where 
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VA1 " XA13 X̂A13 ' XA11^* 
85 

It may be easily verified that U^_ is orthogonal and that 

HJoA^Al * B̂ XAll,XA12,XA13,XAlV 86 

where D signifies a diagonal matrix. 

For the two-port Ag, and Bg matrices respectively, we may compute 

the following. 

87 

-m n 
"XA23 

0 

UA2 
.1 

VA2 

n 

"XA23 

m 

0 

0 

at 

XA23 

n 

0 XA23 
n -m 

VA2 \23 X̂A23 " XA21^ 

-n m ->B13 0 

% .1 VHL 
m n 

0 

0 

n 

*EL3 

m 

0 
^213 

m -n 

VHL " XB13 X̂SL3 " xHLV 

n m -XB23 
0 

UB2 
.1 

VB2 

m 

-XB23 

-n 

0 

0 

-n 

*B23 

m 

0 
*B23 

m n 

VB2 * >B23 X̂B23 " ̂BZL^ 

88 

89 

90 

91 

92 

Mote that in all of these matrices, m and n are defined as in equations 

73-

It is interesting to note that the matrices given in equations 81* 
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through 92 can be used to transform a quadratic form into a canonical form 

* 1 ̂  — — <— 
aw> XVAJ.WWO * 

Let 

x - U^y. 93 

Then, for the two-port case, 

pi - " y'WAi^ 

* XAllyi + XA12^2 * X£L3y3 + XAll7U * ^ 

It does not appear possible however, to use the same transformation 93 to 

simultaneously reduce two quadratic forms, say P^ and Pg to canonical 

forms such as 9h-

Appendix C. Solutions of Networks with Unusual Boundary Conditions 

The following are network analyzer solutions for the three-port 

network of Fig. 2 with unusual boundary conditions, similar to those dis­

cussed in paragraph III, B. In all the problems shown, the network is the 

same network with terminal admittances as given in Table 2. 

Table 2. Terminal admittances for the three-port network of Fig. 2 

Per Unit Mhos 

^ V V 

1-2 -1.923 9.615 

2-3 -1.538 12.308 

3-1 -0.676 li.05L 

1. Solution of the three-port network with normal boundary conditions 

The "normal" boundary conditions are those as specified in equations 

26, 27, 28 and 29. These are tabulated as follows, along with the network 
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analyzer solution. 

Table 3. Solution of network with normal boundary conditions 

Port Quantity 
Boundary 
Conditions Solution 

1 pi 
2.0 2.00 

«1 
™ 0.26 

h  1.05 1.05/1° 

2 P2 -3.0 -3.00 

«2 -1.5 -I.50 

È2 
— 0.97/dL 

3 P3 
—— 1.08 

% — 1.85 

b  
1.10/0° 

2. Solution of the three-port network with unusual boundary conditions 

Following are four additional solutions to the same problem as in 

paragraph 1 with boundary conditions not normally encountered in power 

system problems. 

First consider the case of three boundary conditions on one port. As 

previously discussed, it is necessary to remove one boundary condition 

from another port in the system. 

Now consider a case with four boundary conditions on one port. Note 

that the total number of boundary conditions remains at six. 

The next solution represents a case wherein all boundary conditions 

are confined to only two ports. 
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Table U* Three-port network with three constraints on one port 

Port Quantity 
Boundaiy 
Condition Solution 

1 pi 2.0 2.00 

— 1.00 

h  
" 1.13/2! 

2 P2 —3.0 -3.00 

-1.5 -I.50 

*2 
1.0 1.00/-5° 

3 P3 
— 1.Q5 

% — 1.08 

h  1-1/2! 1.10/0° 

Finally, consider a case wherein the real components of all voltages 

and currents are given and the quadrature components are desired. Since 

the boundary conditions here are all linear, the solution will likewise be 

linear. In this case the solution can be written and a set of three 

linear equations solved. 

We have previously defined the following. 

K  -  \  *  
95 

®k • °k * J*k 

Now, writing the Kirchhoff !s law constraints, this time in terms of termi­

nal impedances rather than terminal admittances, we obtain the following. 
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Table 5* Three-port network with four constraints on one port 

Port Quantity 
Boundary 
Condition Solution 

1 pi 
2.0 2.00 

»L — 1.00 

- A 
—— i-ti/z! 

2 P2 -3-0 —3«00 

«2 -1.5 -I.50 

=2 l.o/o. 1.00/0° 

3 P3 
— 1.05 

% — 1.08 

h  
l.l 1.10/g! 

iL'Zllil + W ̂  

*2 " Z21*l + Z22*2 + Z23*3 96 

^3 * SÀ * Z32*2 + Z33*3 

Here the termina], impedances are defined in the usual way where 

zik " *ik + *^ik" 97 

Now by expanding equations 96 into real and quadrature components as de­

fined in 95 and 97, we obtain the following. 

®1 " %=1 " W + *12=2 - X12(b2) + *13=3 " Xl3(b3) 

e2 " *21=1 "" X21 b̂l^ * *22=2 " X22 b̂2^ * *23=3 " X23 b̂3^ 

e3 " *31=1 " Sl^l^ + *32=2 ' Z32 b̂2^ + *33=3 ** *33^3^ 
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Table 6. Three-port network with boundary conditions 
confined to two ports 

Boundary 
Port Quantity Condition Solution 

1 P1 2.0 2.00 

«L 1.5 1.50 

=1 0° 1.16/0° 

2 P2 —3.0 -3.00 

«2 -I.5 -I.50 

K  1.0 1.00/-6° 

3 P3 
— 1.18 

% —— 2.16 

h  
— I.O8/-I0 

* %l(b%) * *11*1 + + *12*2 + ̂ 3̂ 3̂  + *13=3 

(f g) m ) * ̂ 21=1 + + *22=2 + ̂ 23^3^ + X23=3 " 

(f3) - ̂ (b^) + + RjgCbg) + *32*2 * 833^3) + *33*3 

For clarity, the unknown quantities in equations 98 and 99 are shown in 

parentheses. It will now be observed that equations 98 may be solved di­

rectly for bp bg and b^. These values may then be substituted into e-

qnations 99 to find f^, f^ and f^. Thus, with linear boundary conditions, 

however unusual they may be, the network may be solved directly as linear 

equations. 
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Appendix D. Iterative Solutions 

Table ?• Ward and Hale iterative solution 

Iteration el fl e2 f2 

0 1.0000 0.0000 1.0000 0.0000 

1 1.0513 0.1377 0.9833 -0,0595 

2 1.01*69 0.0922 0.9758 -0.0783 
3 1.01*72 0.0779 0.9751 -0.081*1 

h l.ottfU 0.0737 0.9751 -0.0857 

5 1.01*75 0.0721* 0.9751 -0.0862 
6 1.01*75 0.0721 0.9751 -0.0863 

7-15 1.QU75 0.0720 0.9751 -0.0861* 

Table 8. Iteration I solution 

Iteration el e2 f2 

0 1.0000 0.0000 1.0000 0.0000 

1 1.0513 0.0781* 0.9888 -0.081*5 

2 1.01*76 0.0720 0.9753 -0.0861* 

3-5 1.01*75 0.0720 0.9751 -0.0861* 

In order to illustrate the speed of convergence of the three methods 

investigated, an example is tabulated in Tables 7, 8 and 9 for all three 

methods. The problem used for this purpose is Run 1 of Table 1. This 

problem was programmed to iterate until each correction term was less than 

10~8 and the solution was printed out to nine significant figures. Since 
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Fig. U. Flow chart for Iteration I 
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Fig. U. Flow chart for Iteration I 
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Fig. 5. Flow chart for Iteration II 
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Fig. 5- Flow chart for Iteration II 
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Table 9. Iteration II solution 

Iteration 
*1 fl e2 *2 

0 1.0000 0.0000 1.0000 0.0000 

1 1.0513 0.0781* 0.9888 -0.08L5 

2 1.0U69 0.0713 0.9757 -0.0862 

3 1.01*76 0.0720 0.9752 -0.086U 

lt-9 1.01*75 0.0720 0.9751 -0.086b 

the purpose of the tabulation here is to show only the nature of the con­

vergence, the voltages have been rounded to four places. Note that for 

each iteration the initial voltage, called iteration zero, is 1.0 + jO. 

The complete computer programs which solve the problem and output 

data in the manner tabulated above are not important since the program 

itself will probably be different if coded by different individuals. How­

ever, the flow charts from which the problems are coded are of interest 

since these charts allow us to visualize the complete solution regardless 

of the manner in which it is programmed = Flow charts for the three 

methods investigated are shown in Figs. 3, h and 5* 
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